2,739 research outputs found

    Optimized Network-coded Scalable Video Multicasting over eMBMS Networks

    Get PDF
    Delivery of multicast video services over fourth generation (4G) networks such as 3GPP Long Term Evolution-Advanced (LTE-A) is gaining momentum. In this paper, we address the issue of efficiently multicasting layered video services by defining a novel resource allocation framework that aims to maximize the service coverage whilst keeping the radio resource footprint low. A key point in the proposed system mode is that the reliability of multicast video services is ensured by means of an Unequal Error Protection implementation of the Network Coding (UEP-NC) scheme. In addition, both the communication parameters and the UEP-NC scheme are jointly optimized by the proposed resource allocation framework. Numerical results show that the proposed allocation framework can significantly increase the service coverage when compared to a conventional Multi-rate Transmission (MrT) strategy.Comment: Proc. of IEEE ICC 2015 - Mobile and Wireless Networking Symposium, to appea

    Growth Codes: Intermediate Performance Analysis and Application to Video

    Get PDF
    Growth codes are a subclass of Rateless codes that have found interesting applications in data dissemination problems. Compared to other Rateless and conventional channel codes, Growth codes show improved intermediate performance which is particularly useful in applications where partial data presents some utility. In this paper, we investigate the asymptotic performance of Growth codes using the Wormald method, which was proposed for studying the Peeling Decoder of LDPC and LDGM codes. Compared to previous works, the Wormald differential equations are set on nodes' perspective which enables a numerical solution to the computation of the expected asymptotic decoding performance of Growth codes. Our framework is appropriate for any class of Rateless codes that does not include a precoding step. We further study the performance of Growth codes with moderate and large size codeblocks through simulations and we use the generalized logistic function to model the decoding probability. We then exploit the decoding probability model in an illustrative application of Growth codes to error resilient video transmission. The video transmission problem is cast as a joint source and channel rate allocation problem that is shown to be convex with respect to the channel rate. This illustrative application permits to highlight the main advantage of Growth codes, namely improved performance in the intermediate loss region. © 1972-2012 IEEE

    Enhanced Rateless Coding and Compressive Sensing for Efficient Data/multimedia Transmission and Storage in Ad-hoc and Sensor Networks

    Get PDF
    In this dissertation, we investigate the theory and applications of the novel class of FEC codes called rateless or fountain codes in video transmission and wireless sensor networks (WSN). First, we investigate the rateless codes in intermediate region where the number of received encoded symbols is less that minimum required for full datablock decoding. We devise techniques to improve the input symbol recovery rate when the erasure rate is unknown, and also for the case where an estimate of the channel erasure rate is available. Further, we design unequal error protection (UEP) rateless codes for distributed data collection of data blocks of unequal lengths, where two encoders send their rateless coded output symbols to a destination through a common relay. We design such distributed rateless codes, and jointly optimize rateless coding parameters at each nodes and relaying parameters. Moreover, we investigate the performance of rateless codes with finite block length in the presence of feedback channel. We propose a smart feedback generation technique that greatly improves the performance of rateless codes when data block is finite. Moreover, we investigate the applications of UEP-rateless codes in video transmission systems. Next, we study the optimal cross-layer design of a video transmission system with rateless coding at application layer and fixed-rate coding (RCPC coding) at physical layer. Finally, we review the emerging compressive sensing (CS) techniques that have close connections to FEC coding theory, and designed an efficient data storage algorithm for WSNs employing CS referred to by CStorage. First, we propose to employ probabilistic broadcasting (PB) to form one CS measurement at each node and design CStorage- P. Later, we can query any arbitrary small subset of nodes and recover all sensors reading. Next, we design a novel parameterless and more efficient data dissemination algorithm that uses two-hop neighbor information referred to alternating branches (AB).We replace PB with AB and design CStorage-B, which results in a lower number of transmissions compared to CStorage-P.Electrical Engineerin
    corecore