875 research outputs found

    CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multiplication

    Full text link
    Sparse matrix-vector multiplication (SpMV) is a fundamental building block for numerous applications. In this paper, we propose CSR5 (Compressed Sparse Row 5), a new storage format, which offers high-throughput SpMV on various platforms including CPUs, GPUs and Xeon Phi. First, the CSR5 format is insensitive to the sparsity structure of the input matrix. Thus the single format can support an SpMV algorithm that is efficient both for regular matrices and for irregular matrices. Furthermore, we show that the overhead of the format conversion from the CSR to the CSR5 can be as low as the cost of a few SpMV operations. We compare the CSR5-based SpMV algorithm with 11 state-of-the-art formats and algorithms on four mainstream processors using 14 regular and 10 irregular matrices as a benchmark suite. For the 14 regular matrices in the suite, we achieve comparable or better performance over the previous work. For the 10 irregular matrices, the CSR5 obtains average performance improvement of 17.6\%, 28.5\%, 173.0\% and 293.3\% (up to 213.3\%, 153.6\%, 405.1\% and 943.3\%) over the best existing work on dual-socket Intel CPUs, an nVidia GPU, an AMD GPU and an Intel Xeon Phi, respectively. For real-world applications such as a solver with only tens of iterations, the CSR5 format can be more practical because of its low-overhead for format conversion. The source code of this work is downloadable at https://github.com/bhSPARSE/Benchmark_SpMV_using_CSR5Comment: 12 pages, 10 figures, In Proceedings of the 29th ACM International Conference on Supercomputing (ICS '15

    Speculative Segmented Sum for Sparse Matrix-Vector Multiplication on Heterogeneous Processors

    Full text link
    Sparse matrix-vector multiplication (SpMV) is a central building block for scientific software and graph applications. Recently, heterogeneous processors composed of different types of cores attracted much attention because of their flexible core configuration and high energy efficiency. In this paper, we propose a compressed sparse row (CSR) format based SpMV algorithm utilizing both types of cores in a CPU-GPU heterogeneous processor. We first speculatively execute segmented sum operations on the GPU part of a heterogeneous processor and generate a possibly incorrect results. Then the CPU part of the same chip is triggered to re-arrange the predicted partial sums for a correct resulting vector. On three heterogeneous processors from Intel, AMD and nVidia, using 20 sparse matrices as a benchmark suite, the experimental results show that our method obtains significant performance improvement over the best existing CSR-based SpMV algorithms. The source code of this work is downloadable at https://github.com/bhSPARSE/Benchmark_SpMV_using_CSRComment: 22 pages, 8 figures, Published at Parallel Computing (PARCO

    Tuning and optimization for a variety of many-core architectures without changing a single line of implementation code using the Alpaka library

    Full text link
    We present an analysis on optimizing performance of a single C++11 source code using the Alpaka hardware abstraction library. For this we use the general matrix multiplication (GEMM) algorithm in order to show that compilers can optimize Alpaka code effectively when tuning key parameters of the algorithm. We do not intend to rival existing, highly optimized DGEMM versions, but merely choose this example to prove that Alpaka allows for platform-specific tuning with a single source code. In addition we analyze the optimization potential available with vendor-specific compilers when confronted with the heavily templated abstractions of Alpaka. We specifically test the code for bleeding edge architectures such as Nvidia's Tesla P100, Intel's Knights Landing (KNL) and Haswell architecture as well as IBM's Power8 system. On some of these we are able to reach almost 50\% of the peak floating point operation performance using the aforementioned means. When adding compiler-specific #pragmas we are able to reach 5 TFLOPS/s on a P100 and over 1 TFLOPS/s on a KNL system.Comment: Accepted paper for the P\^{}3MA workshop at the ISC 2017 in Frankfur

    CLBlast: A Tuned OpenCL BLAS Library

    Full text link
    This work introduces CLBlast, an open-source BLAS library providing optimized OpenCL routines to accelerate dense linear algebra for a wide variety of devices. It is targeted at machine learning and HPC applications and thus provides a fast matrix-multiplication routine (GEMM) to accelerate the core of many applications (e.g. deep learning, iterative solvers, astrophysics, computational fluid dynamics, quantum chemistry). CLBlast has five main advantages over other OpenCL BLAS libraries: 1) it is optimized for and tested on a large variety of OpenCL devices including less commonly used devices such as embedded and low-power GPUs, 2) it can be explicitly tuned for specific problem-sizes on specific hardware platforms, 3) it can perform operations in half-precision floating-point FP16 saving bandwidth, time and energy, 4) it has an optional CUDA back-end, 5) and it can combine multiple operations in a single batched routine, accelerating smaller problems significantly. This paper describes the library and demonstrates the advantages of CLBlast experimentally for different use-cases on a wide variety of OpenCL hardware.Comment: Conference paper in: IWOCL '18, the International Workshop on OpenC

    Machine Learning Based Auto-tuning for Enhanced OpenCL Performance Portability

    Full text link
    Heterogeneous computing, which combines devices with different architectures, is rising in popularity, and promises increased performance combined with reduced energy consumption. OpenCL has been proposed as a standard for programing such systems, and offers functional portability. It does, however, suffer from poor performance portability, code tuned for one device must be re-tuned to achieve good performance on another device. In this paper, we use machine learning-based auto-tuning to address this problem. Benchmarks are run on a random subset of the entire tuning parameter configuration space, and the results are used to build an artificial neural network based model. The model can then be used to find interesting parts of the parameter space for further search. We evaluate our method with different benchmarks, on several devices, including an Intel i7 3770 CPU, an Nvidia K40 GPU and an AMD Radeon HD 7970 GPU. Our model achieves a mean relative error as low as 6.1%, and is able to find configurations as little as 1.3% worse than the global minimum.Comment: This is a pre-print version an article to be published in the Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). For personal use onl

    PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation

    Full text link
    High-performance computing has recently seen a surge of interest in heterogeneous systems, with an emphasis on modern Graphics Processing Units (GPUs). These devices offer tremendous potential for performance and efficiency in important large-scale applications of computational science. However, exploiting this potential can be challenging, as one must adapt to the specialized and rapidly evolving computing environment currently exhibited by GPUs. One way of addressing this challenge is to embrace better techniques and develop tools tailored to their needs. This article presents one simple technique, GPU run-time code generation (RTCG), along with PyCUDA and PyOpenCL, two open-source toolkits that support this technique. In introducing PyCUDA and PyOpenCL, this article proposes the combination of a dynamic, high-level scripting language with the massive performance of a GPU as a compelling two-tiered computing platform, potentially offering significant performance and productivity advantages over conventional single-tier, static systems. The concept of RTCG is simple and easily implemented using existing, robust infrastructure. Nonetheless it is powerful enough to support (and encourage) the creation of custom application-specific tools by its users. The premise of the paper is illustrated by a wide range of examples where the technique has been applied with considerable success.Comment: Submitted to Parallel Computing, Elsevie

    Performance Portability Study of Linear Algebra Kernels in OpenCL

    Full text link
    The performance portability of OpenCL kernel implementations for common memory bandwidth limited linear algebra operations across different hardware generations of the same vendor as well as across vendors is studied. Certain combinations of kernel implementations and work sizes are found to exhibit good performance across compute kernels, hardware generations, and, to a lesser degree, vendors. As a consequence, it is demonstrated that the optimization of a single kernel is often sufficient to obtain good performance for a large class of more complicated operations.Comment: 11 pages, 8 figures, 2 tables, International Workshop on OpenCL 201
    • …
    corecore