2,482 research outputs found

    WCAM: secured video surveillance with digital rights management

    Get PDF
    The WCAM project aims to provide an integrated system for secure delivery of video surveillance data over a wireless network, while remaining scalable and robust to transmission errors. To achieve these goals., the content is encoded in Motion-JPEG2000 and streamed with a specific RTP protocol encapsulation to prevent the loss of packets containing the most essential data. Protection of the video data is performed at content level using the standardized JPSEC syntax along with flexible encryption of quality layers or resolution levels. This selective encryption respects the JPEG2000 structure of the stream, not only ensuring end-to-end ciphered delivery, but also enabling dynamic content adaptation within the wireless network (quality of service, adaptation to the user's terminal). A DRM (Digital Rights Management) solution, called OpenSDRM is added to manage all authenticated peers on the WLAN (from end-users to cameras), as well as to manage the rights to access and display conditionally the video data. This whole integrated architecture addresses several security problems such as data encryption, integrity, access control and rights management. Using several protection lavers, the level of confidentiality can depend both on content characteristics and user rights, thus also addressing the critical issue of privacy.info:eu-repo/semantics/acceptedVersio

    Anonymous subject identification and privacy information management in video surveillance

    Get PDF
    The widespread deployment of surveillance cameras has raised serious privacy concerns, and many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. Of equal importance are the privacy and efficiency of techniques to first, identify those individuals for privacy protection and second, provide access to original surveillance video contents for security analysis. In this paper, we propose an anonymous subject identification and privacy data management system to be used in privacy-aware video surveillance. The anonymous subject identification system uses iris patterns to identify individuals for privacy protection. Anonymity of the iris-matching process is guaranteed through the use of a garbled-circuit (GC)-based iris matching protocol. A novel GC complexity reduction scheme is proposed by simplifying the iris masking process in the protocol. A user-centric privacy information management system is also proposed that allows subjects to anonymously access their privacy information via their iris patterns. The system is composed of two encrypted-domain protocols: The privacy information encryption protocol encrypts the original video records using the iris pattern acquired during the subject identification phase; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of our framework

    QUALITY-DRIVEN CROSS LAYER DESIGN FOR MULTIMEDIA SECURITY OVER RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS

    Get PDF
    The strong need for security guarantee, e.g., integrity and authenticity, as well as privacy and confidentiality in wireless multimedia services has driven the development of an emerging research area in low cost Wireless Multimedia Sensor Networks (WMSNs). Unfortunately, those conventional encryption and authentication techniques cannot be applied directly to WMSNs due to inborn challenges such as extremely limited energy, computing and bandwidth resources. This dissertation provides a quality-driven security design and resource allocation framework for WMSNs. The contribution of this dissertation bridges the inter-disciplinary research gap between high layer multimedia signal processing and low layer computer networking. It formulates the generic problem of quality-driven multimedia resource allocation in WMSNs and proposes a cross layer solution. The fundamental methodologies of multimedia selective encryption and stream authentication, and their application to digital image or video compression standards are presented. New multimedia selective encryption and stream authentication schemes are proposed at application layer, which significantly reduces encryption/authentication complexity. In addition, network resource allocation methodologies at low layers are extensively studied. An unequal error protection-based network resource allocation scheme is proposed to achieve the best effort media quality with integrity and energy efficiency guarantee. Performance evaluation results show that this cross layer framework achieves considerable energy-quality-security gain by jointly designing multimedia selective encryption/multimedia stream authentication and communication resource allocation

    Survey of Video Encryption Algorithms

    Get PDF
    Research on security of digital video transmission and storage has been gaining attention from researchers in recent times because of its usage in various applications and transmission of sensitive information through the internet. This is as a result of the swift development in efficient video compression techniques and internet technologies. Encryption which is the widely used technique in securing video communication and storage secures video data in compressed formats. This paper presents a survey of some existing video encryption techniques with an explanation on the concept of video compression. The review which also explored the performance metrics used in the evaluation and comparison of the performance of video encryption algorithms is being believed to give readers a quick summary of some of the available encryption techniques

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Cyber Security and Critical Infrastructures 2nd Volume

    Get PDF
    The second volume of the book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles, including an editorial that explains the current challenges, innovative solutions and real-world experiences that include critical infrastructure and 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems
    • …
    corecore