596,636 research outputs found

    Support for energy-oriented design in the Australian context

    Get PDF
    There is a need for decision support tools that integrate energy simulation into early design in the context of Australian practice. Despite the proliferation of simulation programs in the last decade, there are no ready-to-use applications that cater specifically for the Australian climate and regulations. Furthermore, the majority of existing tools focus on achieving interaction with the design domain through model-based interoperability, and largely overlook the issue of process integration. This paper proposes an energy-oriented design environment that both accommodates the Australian context and provides interactive and iterative information exchanges that facilitate feedback between domains. It then presents the structure for DEEPA, an openly customisable system that couples parametric modelling and energy simulation software as a means of developing a decision support tool to allow designers to rapidly and flexibly assess the performance of early design alternatives. Finally, it discusses the benefits of developing a dynamic and concurrent performance evaluation process that parallels the characteristics and relationships of the design process

    LUNES: Agent-based Simulation of P2P Systems (Extended Version)

    Full text link
    We present LUNES, an agent-based Large Unstructured NEtwork Simulator, which allows to simulate complex networks composed of a high number of nodes. LUNES is modular, since it splits the three phases of network topology creation, protocol simulation and performance evaluation. This permits to easily integrate external software tools into the main software architecture. The simulation of the interaction protocols among network nodes is performed via a simulation middleware that supports both the sequential and the parallel/distributed simulation approaches. In the latter case, a specific mechanism for the communication overhead-reduction is used; this guarantees high levels of performance and scalability. To demonstrate the efficiency of LUNES, we test the simulator with gossip protocols executed on top of networks (representing peer-to-peer overlays), generated with different topologies. Results demonstrate the effectiveness of the proposed approach.Comment: Proceedings of the International Workshop on Modeling and Simulation of Peer-to-Peer Architectures and Systems (MOSPAS 2011). As part of the 2011 International Conference on High Performance Computing and Simulation (HPCS 2011

    Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: Integrated dynamic modelling, design optimisation and analysis

    Get PDF
    Using computer models to predict the dynamic performance of ultra-precision machine tools can help manufacturers to substantially reduce the lead time and cost of developing new machines. However, the use of electronic drives on such machines is becoming widespread, the machine dynamic performance depending not only on the mechanical structure and components but also on the control system and electronic drives. Bench-top ultra-precision machine tools are highly desirable for the micro-manufacturing of high-accuracy micro-mechanical components. However, the development is still at the nascent stage and hence lacks standardised guidelines. Part 2 of this two-part paper proposes an integrated approach, which permits analysis and optimisation of the entire machine dynamic performance at the early design stage. Based on the proposed approach, the modelling and simulation process of a novel five-axis bench-top ultra-precision micro-milling machine tool—UltraMill—is presented. The modelling and simulation cover the dynamics of the machine structure, the moving components, the control system and the machining process and are used to predict the entire machine performance of two typical configurations

    The development of a generic systems-level model for combustion-based domestic cogeneration

    Get PDF
    The provision of heat and power to dwellings from micro-cogeneration systems is gaining credence around the developed world as a possible means to reduce the significant carbon emissions associated with the domestic sector. However, achieving the optimum performance for these systems requires that building design practitioners are equipped with robust, integrated models, which will provide a realistic picture of the cogeneration performance in-situ. A long established and appropriate means to evaluate the energy performance of buildings and their energy systems is through the use of dynamic building simulation tools. However, until now, only a very limited number of micro-cogeneration device models have been available to the modelling community and generally these have not been appropriate for use within building simulation codes. This paper describes work undertaken within the International Energy Agency's Energy Conservation in Building and Community Systems Annex 42 to address this problem through the development of a generic, combustion based cogeneration device model that is suitable for integration within building simulation tools and can be used to simulate the variety of Internal Combustion Engine (ICE) and Stirling Engine (SE) cogeneration devices that are and will be available for integration into dwellings. The model is described in detail along with details of how it has been integrated into the ESP-r, Energy Plus and TRNSYS simulation platforms

    Software systems for modeling articulated figures

    Get PDF
    Research in computer animation and simulation of human task performance requires sophisticated geometric modeling and user interface tools. The software for a research environment should present the programmer with a powerful but flexible substrate of facilities for displaying and manipulating geometric objects, yet insure that future tools have a consistent and friendly user interface. Jack is a system which provides a flexible and extensible programmer and user interface for displaying and manipulating complex geometric figures, particularly human figures in a 3D working environment. It is a basic software framework for high-performance Silicon Graphics IRIS workstations for modeling and manipulating geometric objects in a general but powerful way. It provides a consistent and user-friendly interface across various applications in computer animation and simulation of human task performance. Currently, Jack provides input and control for applications including lighting specification and image rendering, anthropometric modeling, figure positioning, inverse kinematics, dynamic simulation, and keyframe animation

    Multi-threaded Simulation of 4G Cellular Systems within the LTE-Sim Framework

    Get PDF
    Nowadays, an always increasing number of researchers and industries are putting a large effort in the design and the implementation of protocols, algorithms, and network architectures targeted at the the emerging 4G cellular technology. In this context, multi-core/multi-processor simulation tools can accelerate their activities by drastically reducing the time required to simulate complex scenarios. Unfortunately, today's available tools are mostly single-threaded and they cannot exploit the performance gain offered by parallel programming approaches. To bridge this gap, we have significantly upgraded the LTE-Sim framework by implementing a concurrent scheduling algorithm, namely the Multi-Master Scheduler, aimed at efficiently handling events in a parallel manner, while guaranteeing the correct execution of the simulation itself. Experimental results will demonstrate the effectiveness of our proposal and the performance gain that can be achieved with respect to other classical event scheduling algorithms

    Discrete Simulation of Behavioural Hybrid Process Calculus

    Get PDF
    Hybrid systems combine continuous-time and discrete behaviours. Simulation is one of the tools to obtain insight in dynamical systems behaviour. Simulation results provide information on performance of system and are helpful in detecting potential weaknesses and errors. Moreover, the results are handy in choosing adequate control strategies and parameters. In our contribution we report a work in progress, a technique for simulation of Behavioural Hybrid Process Calculus, an extension of process algebra that is suitable for the modelling and analysis of hybrid systems

    Specifications for modelling fuel cell and combustion-based residential cogeneration device within whole-building simulation programs

    Get PDF
    This document contains the specifications for a series of residential cogeneration device models developed within IEA/ECBCS Annex 42. The devices covered are: solid oxide and polymer exchange membrane fuel cells (SOFC and PEM), and internal combustion and Stirling engine units (ICE and SE). These models have been developed for use within whole-building simulation programs and one or more of the models described herein have been integrated into the following simulation packages: ESP-r, EnergyPlus, TRNSYS and IDA-ICE. The models have been designed to predict the energy performance of cogeneration devices when integrated into a residential building (dwelling). The models account for thermal performance (dynamic thermal performance in the case of the combustion engine models), electrochemical and combustion reactions where appropriate, along with electrical power output. All of the devices are modelled at levels of detail appropriate for whole-building simulation tools
    corecore