2,539 research outputs found

    Implementation of standard testbeds for numerical relativity

    Get PDF
    We discuss results that have been obtained from the implementation of the initial round of testbeds for numerical relativity which was proposed in the first paper of the Apples with Apples Alliance. We present benchmark results for various codes which provide templates for analyzing the testbeds and to draw conclusions about various features of the codes. This allows us to sharpen the initial test specifications, design a new test and add theoretical insight.Comment: Corrected versio

    Pathway to the Square Kilometre Array - The German White Paper -

    Full text link
    The Square Kilometre Array (SKA) is the most ambitious radio telescope ever planned. With a collecting area of about a square kilometre, the SKA will be far superior in sensitivity and observing speed to all current radio facilities. The scientific capability promised by the SKA and its technological challenges provide an ideal base for interdisciplinary research, technology transfer, and collaboration between universities, research centres and industry. The SKA in the radio regime and the European Extreme Large Telescope (E-ELT) in the optical band are on the roadmap of the European Strategy Forum for Research Infrastructures (ESFRI) and have been recognised as the essential facilities for European research in astronomy. This "White Paper" outlines the German science and R&D interests in the SKA project and will provide the basis for future funding applications to secure German involvement in the Square Kilometre Array.Comment: Editors: H. R. Kl\"ockner, M. Kramer, H. Falcke, D.J. Schwarz, A. Eckart, G. Kauffmann, A. Zensus; 150 pages (low resolution- and colour-scale images), published in July 2012, language English (including a foreword and an executive summary in German), the original file is available via the MPIfR homepag

    CompF2: Theoretical Calculations and Simulation Topical Group Report

    Full text link
    This report summarizes the work of the Computational Frontier topical group on theoretical calculations and simulation for Snowmass 2021. We discuss the challenges, potential solutions, and needs facing six diverse but related topical areas that span the subject of theoretical calculations and simulation in high energy physics (HEP): cosmic calculations, particle accelerator modeling, detector simulation, event generators, perturbative calculations, and lattice QCD (quantum chromodynamics). The challenges arise from the next generations of HEP experiments, which will include more complex instruments, provide larger data volumes, and perform more precise measurements. Calculations and simulations will need to keep up with these increased requirements. The other aspect of the challenge is the evolution of computing landscape away from general-purpose computing on CPUs and toward special-purpose accelerators and coprocessors such as GPUs and FPGAs. These newer devices can provide substantial improvements for certain categories of algorithms, at the expense of more specialized programming and memory and data access patterns.Comment: Report of the Computational Frontier Topical Group on Theoretical Calculations and Simulation for Snowmass 202

    Rapid determination of LISA sensitivity to extreme mass ratio inspirals with machine learning

    Full text link
    Gravitational wave observations of the inspiral of stellar-mass compact objects into massive black holes (MBHs), extreme mass ratio inspirals (EMRIs), enable precision measurements of parameters such as the MBH mass and spin. The Laser Interferometer Space Antenna is expected to detect sufficient EMRIs to probe the underlying source population, testing theories of the formation and evolution of MBHs and their environments. Population studies are subject to selection effects that vary across the EMRI parameter space, which bias inference results if unaccounted for. This bias can be corrected, but evaluating the detectability of many EMRI signals is computationally expensive. We mitigate this cost by (i) constructing a rapid and accurate neural network interpolator capable of predicting the signal-to-noise ratio of an EMRI from its parameters, and (ii) further accelerating detectability estimation with a neural network that learns the selection function, leveraging our first neural network for data generation. The resulting framework rapidly estimates the selection function, enabling a full treatment of EMRI detectability in population inference analyses. We apply our method to an astrophysically motivated EMRI population model, demonstrating the potential selection biases and subsequently correcting for them. Accounting for selection effects, we predict that LISA will measure the MBH mass function slope to a precision of 8.8%, the CO mass function slope to a precision of 4.6%, the width of the MBH spin magnitude distribution to a precision of 10% and the event rate to a precision of 12% with EMRIs at redshifts below z=6.Comment: 12 pages, 4 figure

    The numerical relativity breakthrough for binary black holes

    Get PDF
    The evolution of black-hole binaries in vacuum spacetimes constitutes the two-body problem in general relativity. The solution of this problem in the framework of the Einstein field equations is a substantially more complex exercise than that of the dynamics of two point masses in Newtonian gravity, but it also presents us with a wealth of new exciting physics. Numerical methods are likely the only method to compute the dynamics of black-hole systems in the fully non-linear regime and have been pursued since the 1960s, culminating in dramatic breakthroughs in 2005. Here we review the methodology and the developments that finally gave us a solution of this fundamental problem of Einstein's theory and discuss the breakthrough's implication for the wide range of contemporary black-hole physics.Comment: 34 pages, 5 figures; Invited article for Classical and Quantum Gravity's "Milestones of General Relativity" series; to match published versio
    • …
    corecore