253 research outputs found

    Review: optical fiber sensors for civil engineering applications

    Get PDF
    Optical fiber sensor (OFS) technologies have developed rapidly over the last few decades, and various types of OFS have found practical applications in the field of civil engineering. In this paper, which is resulting from the work of the RILEM technical committee “Optical fiber sensors for civil engineering applications”, different kinds of sensing techniques, including change of light intensity, interferometry, fiber Bragg grating, adsorption measurement and distributed sensing, are briefly reviewed to introduce the basic sensing principles. Then, the applications of OFS in highway structures, building structures, geotechnical structures, pipelines as well as cables monitoring are described, with focus on sensor design, installation technique and sensor performance. It is believed that the State-of-the-Art review is helpful to engineers considering the use of OFS in their projects, and can facilitate the wider application of OFS technologies in construction industry

    Time-expanded phase-sensitive optical time-domain reflectometry

    Get PDF
    Phase-sensitive optical time-domain reflectometry (ΦOTDR) is a well-established technique that provides spatio-temporal measurements of an environmental variable in real time. This unique capability is being leveraged in an ever-increasing number of applications, from energy transportation or civil security to seismology. To date, a wide number of different approaches have been implemented, providing a plethora of options in terms of performance (resolution, acquisition bandwidth, sensitivity or range). However, to achieve high spatial resolutions, detection bandwidths in the GHz range are typically required, substantially increasing the system cost and complexity. Here, we present a novel ΦOTDR approach that allows a customized time expansion of the received optical traces. Hence, the presented technique reaches cm-scale spatial resolutions over 1 km while requiring a remarkably low detection bandwidth in the MHz regime. This approach relies on the use of dual-comb spectrometry to interrogate the fibre and sample the backscattered light. Random phase-spectral coding is applied to the employed combs to maximize the signal-to-noise ratio of the sensing scheme. A comparison of the proposed method with alternative approaches aimed at similar operation features is provided, along with a thorough analysis of the new trade-offs. Our results demonstrate a radically novel high-resolution ΦOTDR scheme, which could promote new applications in metrology, borehole monitoring or aerospace

    Chirped-pulse phase-sensitive optical time domain reflectometry

    Get PDF
    El mundo actual funciona gracias a las grandes infraestructuras que dotan de energía y transporte seguros a sus ciudadanos. Dichas infraestructuras (presas, diques, gaseoductos, oleoductos, puentes, líneas de ferrocarril, carreteras…) típicamente presentan grandes dimensiones y es especialmente difícil monitorizar su buen funcionamiento y su salud estructural además de protegerlas de posibles amenazas. Los sensores distribuidos de fibra óptica son una solución fiable y rentable para esta problemática, ya que permiten medir vibraciones, deformaciones y temperatura a lo largo de todos los puntos de una fibra óptica estándar de comunicaciones. Los sensores de fibra óptica basados en scattering Rayleigh son particularmente útiles cuando las medidas deben ser realizadas en tiempo real, como por ejemplo en la detección y caracterización de vibraciones. En esta tesis, se ha realizado un estudio acerca de distintas soluciones y alternativas a las limitaciones de la tecnología OTDR. Se ha propuesto una nueva técnica, derivada de ésta, que ofrece unas prestaciones que superan notablemente a las de los sistemas OTDR tradicionales. Para ello, en primer lugar, se ha procedido a realizar un estudio en profundidad de los fundamentos y el estado del arte de las técnicas de monitorización basadas en Reflectometría Óptica en el Dominio del Tiempo (OTDR, por sus siglas en inglés) y, en particular, sobre la implementación sensible a la fase, también conocida como OTDR. Se ha estudiado la limitación en rango y resolución de los sistemas OTDR principalmente asociada a la aparición de efectos no lineales como la inestabilidad de modulación. Actualmente, un OTDR tradicional presenta una resolución máxima del orden de los 10 metros para un rango de medida del orden de pocas decenas de km (si no se aplica ningún tipo de técnica de amplificación distribuida). Además de estudiar esta limitación y a qué es debida, se han propuesto dos técnicas para mitigar los efectos perjudiciales de la MI. En primer lugar, se ha realizado un estudio del efecto de la forma de los pulsos ópticos empleados en el sensor en la traza retrodispersada en un OTDR. Se ha podido comprobar cómo los pulsos triangulares o gaussianos presentan mayor robustez que los pulsos rectangulares, tradicionalmente empleados, frente a la MI. En segundo lugar, se ha propuesto una técnica basada en el concepto de Amplificación de Pulsos Chirpeados (CPA, por sus siglas en inglés), que ha permitido desarrollar un OTDR con resoluciones milimétricas. Hasta el momento ningún OTDR había podido llegar a tales resoluciones, lo que abre un nuevo abanico de aplicaciones a la tecnología OTDR donde se requiera alta resolución espacial en la medida. También se ha estudiado la otra gran limitación de este tipo de sensores: su comportamiento no lineal ante una perturbación. Actualmente, salvo que se implementen técnicas de recuperación de fase o barridos en longitud de onda que implican más complejidad, coste y tiempo de medida, no es posible realizar medidas cuantificables de temperatura o deformaciones. Del mismo modo, tampoco se pueden realizar medidas acústicas reales. En este trabajo, en primer lugar, se propone emplear la técnica de Reconstrucción de Fase empleando Diferenciación Óptica Ultrarápida (PROUD, por sus siglas en inglés) para recuperar el campo complejo de una señal OTDR. Con esta medida, el sensor pasaría a comportarse de forma lineal sin la complejidad intrínseca de los métodos tradicionales de detección de fase. En segundo lugar, y de aquí viene el nombre de esta tesis doctoral, se propone el uso de pulsos chirpeados en los sensores OTDR. La nueva técnica llamada Chirped-Pulse OTDR, ha permitido la medida de forma lineal de cambios de temperatura y deformaciones, en un único disparo y sin la necesidad de realizar barridos en frecuencia o implementar detección coherente. A lo largo de este trabajo, se han alcanzado resoluciones de 0.5mK/4n y se ha demostrado la posibilidad de hacer medidas acústicas reales. También se han estudiado las limitaciones de esta técnica y propuesto varias soluciones. Se ha demostrado que el ruido de fase del láser empleado en el sistema, puede ser mitigado con esta nueva técnica. Además, se ha propuesto el uso de amplificación distribuida basada en scattering Raman estimulado para alcanzar rangos de medida mayores, hasta 75 km con una resolución espacial de 10 m

    Limits of performance of chirped- pulse phase-sensitive OTDR

    Get PDF
    Distributed acoustic sensing is an emerging field of research which aims to develop methods capable of using a single optical fiber as a long, dense, and high-sensitivity sensor array. Currently, the most promising implementations measure the interference of Rayleigh backscattered light, obtained by probing the fiber with light from a source of high coherence. These methods are known as Phase-sensitive Optical Time-Domain Reflectometers (φOTDR), and are currently undergoing a period of active research and development, both academically and industrially. One of its variants, known as the Chirped-Pulse φOTDR (CP-φOTDR), was developed in 2016. This technique has proven to be remarkably sensitive to strain and temperature, with an attractively simple implementation. In this thesis, we delve into the intricacies of this technique, probing its fundamental limits and addressing current limitations. We discuss the implications of estimation on the performance statistics, the impact of different noise sources and the origin of cross-talk between independent measured positions. In doing so, we also propose methods to reach the current fundamental limitations, and overcome the upper bound of measurable perturbations. We then demonstrate new potential applications of the technique: in seismology, by exploiting the high spatial density of measurements for array signal processing; in the fast characterization of linear birefringence in standard single-mode fibers; and on the measurement of sound pressure waves, by using a special flat cable structure to embed the fiber under test. Finally, we summarize and comment on the aforementioned achievements, proposing some open lines of research that may originate from these results.Distributed acoustic sensing is an emerging field of research which aims to develop methods capable of using a single optical fiber as a long, dense, and highsensitivity sensor array. Currently, the most promising implementations measure the interference of Rayleigh backscattered light, obtained by probing the fiber with light from a source of high coherence. These methods are known as Phase-sensitive Optical Time-Domain Reflectometers (φOTDR), and are currently undergoing a period of active research and development, both academically and industrially. One of its variants, known as the Chirped- Pulse φOTDR (CP-φOTDR), was developed in 2016. This technique has proven to be remarkably sensitive to strain and temperature, with an attractively simple implementation. In this thesis, we delve into the intricacies of this technique, probing its fundamental limits and addressing current limitations. We discuss the implications of estimation on the performance statistics, the impact of different noise sources and the origin of cross-talk between independent measured positions. In doing so, we also propose methods to reach the current fundamental limitations, and overcome the upper bound of measurable perturbations. We then demonstrate new potential applications of the technique: in seismology, by exploiting the high spatial density of measurements for array signal processing; in the fast characterization of linear birefringence in standard single-mode fibers; and on the measurement of sound pressure waves, by using a special flat cable structure to embed the fiber under test. Finally, we summarize and comment on the aforementioned achievements, proposing some open lines of research that may originate from these results

    Using global existing fiber networks for environmental sensing

    Get PDF
    We review recent advances in distributed fiber optic sensing (DFOS) and their applications. The scattering mechanisms in glass, which are exploited for reflectometry-based DFOS, are Rayleigh, Brillouin, and Raman scatterings. These are sensitive to either strain and/or temperature, allowing optical fiber cables to monitor their ambient environment in addition to their conventional role as a medium for telecommunications. Recently, DFOS leveraged technologies developed for telecommunications, such as coherent detection, digital signal processing, coding, and spatial/frequency diversity, to achieve improved performance in terms of measurand resolution, reach, spatial resolution, and bandwidth. We review the theory and architecture of commonly used DFOS methods. We provide recent experimental and field trial results where DFOS was used in wide-ranging applications, such as geohazard monitoring, seismic monitoring, traffic monitoring, and infrastructure health monitoring. Events of interest often have unique signatures either in the spatial, temporal, frequency, or wavenumber domains. Based on the temperature and strain raw data obtained from DFOS, downstream postprocessing allows the detection, classification, and localization of events. Combining DFOS with machine learning methods, it is possible to realize complete sensor systems that are compact, low cost, and can operate in harsh environments and difficult-to-access locations, facilitating increased public safety and smarter cities

    Design of optical fiber sensors and interrogation schemes

    Full text link
    [ES] Las fibras ópticas son dispositivos muy utilizados en el campo de las telecomunicaciones desde su descubrimiento. En las últimas décadas, las fibras ópticas comenzaron a utilizarse como sensores fotónicos. Los primeros trabajos se centraron en la medición de unas dimensiones físicas en un punto específico. Posteriormente, surgió la posibilidad de medir las propiedades de la fibra óptica en diferentes puntos a lo largo de la fibra. Este tipo de sensores se definen como sensores distribuidos. Los componentes optoelectrónicos fueron desarrollados e investigados para telecomunicaciones. Los avances en las telecomunicaciones hicieron posible el desarrollo de sistemas de interrogación para sensores de fibra óptica, creciendo en paralelo con los avances de las telecomunicaciones. Se desarrollaron sistemas de interrogación de fibra óptica que permiten el uso de una única fibra óptica monomodo estándar como sensor que puede monitorear decenas de miles de puntos de detección al mismo tiempo. Los métodos que extraen la información de detección de la señal reflejada en la fibra óptica son los más empleados debido a la facilidad de acceso al sensor y la flexibilidad de estos sistemas. Los más estudiados son la reflectometría en dominios de tiempo y frecuencia. La reflectometría óptica en el dominio del tiempo (OTDR) fue la primera técnica utilizada para detectar la posición de los fallos en las redes de comunica-ción de fibra óptica. El OTDR sensible a la fase hizo posible detectar la elongación y la temperatura en una posición específica. Paralelamente, los gratings de Bragg (FBG) se convirtieron en los dispositivos más utilizados para implementar sensores en fibra óptica discretos. Se desarrollaron técnicas de multiplexación para realizar la detección en múltiples puntos utilizando FGBs. La reflectometría realizada interrogando arrays de FBG débiles demuestra que mejora el rendimiento del sistema en comparación al uso de una fibra monomodo. Los sistemas de interrogatorio actuales tienen algunos inconvenientes. Algunos de ellos son velocidad de interrogatorio limitada, grandes dimensiones y alto costo. En esta tesis doctoral se desarrollaron nuevos sistemas de interrogación y sensores de fibra óptica para superar algunos de estos inconvenientes. Los sensores de fibra óptica de plástico demuestran ser una plataforma innovadora para desarrollar nuevos sensores y sistemas de interrogación de bajo costo y fáciles de implementar para fibras de plástico comerciales. Se investigó la reflectometría en el dominio del tiempo y las técnicas fotónicas de microondas para la interrogación de una matriz de rejillas débiles que permitieron simplificar el sistema de interrogación para la detección de temperatura y vibración.[CA] Les fibres òptiques són dispositius molt utilitzats en el camp de les telecomunica-cions des del seu descobriment. En les últimes dècades, les fibres òptiques van començar a utilitzar-se com a sensors fotònics. Els primers treballs es van centrar en el mesurament d'unes dimensions físiques en un punt específic. Posteriorment, va sorgir la possibilitat de mesurar les propietats de la fibra òptica en diferents punts al llarg de la fibra. Aquest tipus de sensors es defineixen com a sensors distribüits. Els components optoelectrònics van ser desenvolupats i investigats per a telecomunicacions. Els avanços en les telecomunicacions van fer possi-ble el desenvolupament de sistemes d'interrogació per a sensors de fibra òptica, creixent en paral·lel amb els avanços de les telecomunicacions. Es van desenvolupar sistemes d'interrogació de fibra òptica que permeten l'ús d'una única fibra òptica monomodo estàndard com a sensor que pot monitorar desenes de milers de punts de detecció al mateix temps. Els mètodes que extreuen la informació de detecció del senyal reflectit en la fibra òptica són els més utilitzats a causa de la facilitat d'accés al sensor i la flexibilitat d'aquests sistemes. Els més estudiats són la reflectometría en dominis de temps i freqüència. La reflectometría òptica en el domini del temps (OTDR) va ser la primera tècnica utilitzada per a detectar la posició de les fallades en les xarxes de comunicació de fibra òptica. El OTDR sensible a la fase va fer possible detectar l'elongació i la temperatura en una posició específica. Paral·lelament, els gratings de Bragg (FBG) es van convertir en els dispositius més utilitzats per a implementar sensors en fibra òptica discrets. Es van desenvolupar tècniques de multiplexació per a realitzar la detecció en múltiples punts utilitzant FGBs. La reflectometría realitzada interrogant arrays de FBG febles demostra que millora el rendiment del sistema en comparació a l'ús d'una fibra monomodo. Els sistemes d'interrogatori actuals tenen alguns inconvenients. Alguns d'ells són velocitat d'interrogatori limitada, voluminositat i alt cost. En aquesta tesi doctoral es van desenvolupar nous sistemes d'interrogació i sensors de fibra òptica per a superar alguns d'aquests inconvenients. Els sensors de fibra òptica de plàstic demostren ser una plataforma innovadora per a desenvolupar nous sensors i siste-mes d'interrogació de baix cost i fàcils d'implementar per a fibres de plàstic comercials. Es va investigar la reflectometría en el domini del temps i les tècniques fotòniques de microones per a la interrogació d'una matriu de reixetes febles que van permetre simplificar el sistema d'interrogació per a la detecció de temperatura i vibració.[EN] Optical fibers are devices largely used in telecommunication field since their discovery. In the last decades, optical fibers started to be used as photonic sensors. The first works were focused on the measurement of physical dimensions to a specific point. Afterward, emerged the possibility to measure the optical fiber properties at different locations along the fiber. These kinds of sensors are defined as distributed sensors. The optoelectronic components were developed and investigated for telecommunications. The progress in telecommunication made possible the development of optical fiber sensors interrogation systems, growing in parallel with the advances of telecommunications. Optical fiber interrogation systems were developed to use a single standard monomode optical fiber as a sensor that can monitor tens of thousands of sensing points at the same time. The methods that extract the sensing information from the backscattered signal in the optical fiber are widely employed because of the easiness of access to the sensor element and the flexibility of these systems. The most studied are the reflectometry in time and frequency domains. The optical time domain reflectometry (OTDR) was the first technique used to detect the position of the failures in the optical fiber communication networks. Using phase sensitive OTDR it is possible to sense strain and temperature at a specific position. In parallel, fiber Bragg gratings (FBGs) became the most widely used devices to implement discrete optical fiber sensors. Multiplexing techniques were developed to perform multi points sensing using these gratings. The reflectometry performed interrogating weak FBGs arrays demonstrate to improve the performance of the system employing a single mode fiber. The interrogation systems nowadays have some drawbacks. Some of them are limited speed of interrogation, bulkiness, and high cost. New interrogation systems and optical fiber sensors were developed in this doctoral thesis to overcome some of these drawbacks. Plastic optical fiber sensors demonstrate to be an innovative platform to develop both new sensors and low cost, easy to implement interrogation systems for commercial plastic fibers. Reflectometry in time domain and microwave photonic techniques were investigated for the interrogation of weak gratings array allowed to simplify the interrogation system for the sensing of temperature and vibration.I would like to greatly thank the European Union’s Horizon 2020 Research and Innovation Program that funded the research described in this thesis under the Marie Sklodowska-Curie Action Grant Agreement 722509.Sartiano, D. (2021). Design of optical fiber sensors and interrogation schemes [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161357TESI

    Highly-sensitive measurements with chirped- pulse phasesensitive OTDR

    Get PDF
    Distributed optical fiber sensing is currently a very predominant research field, which perceives optical fibers as the potential nervous system of the Earth. Optical fibers are understood as continuous densely-packed sensing arrays, able of retrieving physical quantities from the environment of the fiber. Some of the most prominent distributed sensing implementations nowadays rely on performing interferometric measurements using the Rayleigh backscattered light, resorting to a technique called Phase-sensitive Optical Time-Domain Reflectometry (CP-ϕOTDR). A variant to this technique has been recently proposed in 2016, known as Chirped-Pulse Phase-Sensitive OTDR, which allowed to overcome most of the limitations of traditional ϕOTDR implementations while retaining a simple setup, yielding remarkably high sensitivities. In this thesis, we aim to optimize the stability and performance of chirped-pulse ϕOTDR systems over long-term measurements, and develop novel paradigm changing applications benefiting from the high sensitivity provided by the technique. We reach a mK-scale long-term stability in ϕOTDR systems, and perform highly sensitive strain, temperature, and refractive index measurements, demonstrating new photonic applications such as distributed bolometry, electro-optical reflectometry, or distributed underwater seismology. We discuss how these applications might be able of increasing the efficiency in the energy field, paving the way towards the development of self-diagnosable grids (smart-grids), and also of revolutionizing next-generation seismological networks, allowing to overcome some of the greatest limitations faced in modern seismology today.Distributed optical fiber sensing is currently a very predominant research field, which perceives optical fibers as the potential nervous system of the Earth. Optical fibers are understood as continuous densely-packed sensing arrays, able of retrieving physical quantities from the environment of the fiber. Some of the most prominent distributed sensing implementations nowadays rely on performing interferometric measurements using the Rayleigh backscattered light, resorting to a technique called Phase-sensitive Optical Time-Domain Reflectometry (φOTDR). A variant to this technique has been recently proposed in 2016, known as Chirped-Pulse Phase-Sensitive OTDR, which allowed to overcome most of the limitations of traditional φOTDR implementations while retaining a simple setup, yielding remarkably high sensitivities. In this thesis, we aim to optimize the stability and performance of chirped-pulse φOTDR systems over long-term measurements, and develop novel paradigm changing applications benefiting from the high sensitivity provided by the technique. We reach a mK-scale long-term stability in φOTDR systems, and perform highly sensitive strain, temperature and refractive index measurements, demonstrating new photonic applications such as distributed bolometry, electro-optical reflectometry, or distributed underwater seismology. We discuss how these applications might be able of increasing the efficiency in the energy field, paving the way towards the development of self-diagnosable grids (smart-grids), and also of revolutionizing nextgeneration seismological networks, allowing to overcome some of the greatest limitations faced in modern seismology today. We finally conclude and summarize the objectives achieved in this thesis, commenting on the potential of the novel applications shown, and proposing future lines of research based on the results

    Fiber Optic Acoustic Sensing to Understand and Affect the Rhythm of the Cities: Proof-of-Concept to Create Data-Driven Urban Mobility Models

    Get PDF
    In the framework of massive sensing and smart sustainable cities, this work presents an urban distributed acoustic sensing testbed in the vicinity of the School of Technology and Telecommunication Engineering of the University of Granada, Spain. After positioning the sensing technology and the state of the art of similar existing approaches, the results of the monitoring experiment are described. Details of the sensing scenario, basic types of events automatically distinguishable, initial noise removal actions and frequency and signal complexity analysis are provided. The experiment, used as a proof-of-concept, shows the enormous potential of the sensing technology to generate data-driven urban mobility models. In order to support this fact, examples of preliminary density of traffic analysis and average speed calculation for buses, cars and pedestrians in the testbed’s neighborhood are exposed, together with the accidental presence of a local earthquake. Challenges, benefits and future research directions of this sensing technology are pointed out.B-TIC-542-UGR20 funded by “Consejería de Universidad, Investigación e Innovacción de la Junta de AndalucíaERDF A way of making Europ

    Distributed, Advanced Fiber Optic Sensors

    Get PDF
    India is poised to use nuclear energy in a big way. The safety of these systems depends upon monitoring various parameters in hazardous environment like high radiation, high temperature exceeding 1000°C, and gas/coolant leakages. In this chapter, we shall dwell on basics of distributed sensing, related instrumentation, device fabrication, and actual advanced field applications. Techniques like Raman scattering, resonance response of fiber gratings, and selective absorption are employed for design, development, and fabrication of distributed sensors and devices. Raman distributed sensors with advanced data processing techniques are finding increasing applications for fire detection, coolant leak detection, and safety of large structures. The systematic investigations related to portable systems developed at the author’s lab have been described. Wavelength-encoded fiber gratings are the attractive candidate for high gamma radiation dose measurements in environment such as particle accelerators, fission reactors, food processing facilities, and ITER-like installations. The basics of fiber gratings, their operational designs, and devices based on fiber gratings have been described with advanced applications like high temperature sensing, strain measurements at cryogenic temperatures, and strain in nuclear environment. Finally, novel approaches are described for distributed hazardous gas monitoring for large areas such as airports, train stations, and reactor containment buildings
    corecore