802 research outputs found

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft

    A High-Resolution Regional Climate Model Physics Ensemble for Northern Sub-Saharan Africa

    Get PDF
    While climate information from General Circulation Models (GCMs) are usually too coarse for climate impact modelers or decision makers from various disciplines (e.g., hydrology, agriculture), Regional Climate Models (RCMs) provide feasible solutions for downscaling GCM output to finer spatiotemporal scales. However, it is well known that the model performance depends largely on the choice of the physical parameterization schemes, but optimal configurations may vary e.g., from region to region. Besides land-surface processes, the most crucial processes to be parameterized in RCMs include radiation (RA), cumulus convection (CU), cloud microphysics (MP), and planetary boundary layer (PBL), partly with complex interactions. Before conducting long-term climate simulations, it is therefore indispensable to identify a suitable combination of physics parameterization schemes for these processes. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis product ERA-Interim as lateral boundary conditions, we derived an ensemble of 16 physics parameterization runs for a larger domain in Northern sub-Saharan Africa (NSSA), northwards of the equator, using two different CU-, MP-, PBL-, and RA schemes, respectively, using the Weather Research and Forecasting (WRF) model for the period 2006–2010 in a horizontal resolution of approximately 9 km. Based on different evaluation strategies including traditional (Taylor diagram, probability densities) and more innovative validation metrics (ensemble structure-amplitude-location (eSAL) analysis, Copula functions) and by means of different observation data for precipitation (P) and temperature (T), the impact of different physics combinations on the representation skill of P and T has been analyzed and discussed in the context of subsequent impact modeling. With the specific experimental setup, we found that the selection of the CU scheme has resulted in the highest impact with respect to the representation of P and T, followed by the RA parameterization scheme. Both, PBL and MP schemes showed much less impact. We conclude that a multi-facet evaluation can finally lead to better choices about good physics scheme combinations

    The Integrated WRF/Urban Modeling System: Development, Evaluation, and Applications to Urban Environmental Problems

    Get PDF
    To bridge the gaps between traditional mesoscale modeling and microscale modeling, the National Center for Atmospheric Research (NCAR), in collaboration with other agencies and research groups, has developed an integrated urban modeling system coupled to the Weather Research and Forecasting (WRF) model as a community tool to address urban environmental issues. The core of this WRF/urban modeling system consists of: 1) three methods with different degrees of freedom to parameterize urban surface processes, ranging from a simple bulk parameterization to a sophisticated multi-layer urban canopy model with an indoor outdoor exchange sub-model that directly interacts with the atmospheric boundary layer, 2) coupling to fine-scale Computational Fluid Dynamic (CFD) Reynolds-averaged Navier–Stokes (RANS) and Large-Eddy Simulation (LES) models for Transport and Dispersion (T&D) applications, 3) procedures to incorporate high-resolution urban land-use, building morphology, and anthropogenic heating data using the National Urban Database and Access Portal Tool (NUDAPT), and 4) an urbanized high-resolution land-data assimilation system (u-HRLDAS). This paper provides an overview of this modeling system; addresses the daunting challenges of initializing the coupled WRF/urban model and of specifying the potentially vast number of parameters required to execute the WRF/urban model; explores the model sensitivity to these urban parameters; and evaluates the ability of WRF/urban to capture urban heat islands, complex boundary layer structures aloft, and urban plume T&D for several major metropolitan regions. Recent applications of this modeling system illustrate its promising utility, as a regional climate-modeling tool, to investigate impacts of future urbanization on regional meteorological conditions and on air quality under future climate change scenarios

    Development of the WRF-CO2 4D-Var assimilation system v1.0

    Get PDF
    Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var) assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF) modeling system, including the system coupled to chemistry (WRF-Chem), with tangent linear and adjoint codes (WRFPLUS), and with data assimilation (WRFDA), all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system without incurring a large amount of code development. WRF-CO2 4D-Var solves for the optimized CO2 flux scaling factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization algorithm (L-BFGS-B) and the second uses the Lanczos conjugate gradient (CG) in an incremental approach. WRFPLUS forward, tangent linear, and adjoint models are modified to include the physical and dynamical processes involved in the atmospheric transport of CO2. The system is tested by simulations over a domain covering the continental United States at 48 km × 48 km grid spacing. The accuracy of the tangent linear and adjoint models is assessed by comparing against finite difference sensitivity. The system\u27s effectiveness for CO2 inverse modeling is tested using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of WRF-CO2 4D-Var for regional CO2 inversions

    Optimization of weather forecasting for cloud cover over the European domain using the meteorological component of the Ensemble for Stochastic Integration of Atmospheric Simulations version 1.0

    Get PDF
    In this study, we present an expansive sensitivity analysis of physics configurations for cloud cover using the Weather Forecasting and Research Model (WRF V3.7.1) on the European domain. The experiments utilize the meteorological part of a large ensemble framework known as the Ensemble for Stochastic Integration of Atmospheric Simulations (ESIAS-met). The experiments first seek the best deterministic WRF physics configuration by simulating over 1,000 combinations of microphysics, cumulus parameterization, planetary boundary layer physics (PBL), surface layer physics, radiation scheme and land surface models. The results on six different test days are compared to CMSAF satellite images from EUMETSAT. We then selectively conduct stochastic simulations to assess the best choice for ensemble forecasts. The results indicate a high variability in terms of physics and parameterization. The combination of Goddard, WSM6, or CAM5.1 microphysics with MYNN3 or ACM2 PBL exhibited the best performance in Europe. For probabilistic simulations, the combination of WSM6 and SBU&ndash;YL microphysics with MYNN2 and MYNN3 showed the best performance, capturing the cloud fraction and its percentiles with 32 ensemble members. This work also demonstrates the capability and performance of ESIAS-met for large ensemble simulations and sensitivity analysis.</p
    corecore