42,126 research outputs found

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Necessary skills and practices required for effective participation in high bandwidth design team activities

    Get PDF
    Technology is continually changing, and evolving, throughout the entire construction industry; and particularly in the design process. One of the principal manifestations of this is a move away from team working in a shared work space to team working in a virtual space, using increasingly sophisticated electronic media. Due to the significant operating differences when working in shared and virtual spaces adjustments to generic skills utilised by members is a necessity when moving between the two conditions. This paper reports an aspect of a CRC-CI research project based on research of ‘generic skills’ used by individuals and teams when engaging with high bandwidth information and communication technologies (ICT). It aligns with the project’s other two aspects of collaboration in virtual environments: ‘processes’ and ‘models’. The entire project focuses on the early stages of a project (i.e. design) in which models for the project are being developed and revised. The paper summarises the first stage of the research project which reviews literature to identify factors of virtual teaming which may affect team member skills. It concludes that design team participants require ‘appropriate skills’ to function efficiently and effectively, and that the introduction of high band-width technologies reinforces the need for skills mapping and measurement

    Redesigning work organizations and technologies: experiences from European projects

    Get PDF
    Currently distributed business process (re) design (resulting in components of business networks) basically relies on technical criteria. And that are the main purposes of most research projects supported by EC. Through the process of building a European Research Area, this means a strong influence in the national research programmes. However it is generally accepted that it should also take into account social criteria and aspects such as the quality of working life, or participation in decision processes. Those were some of the objectives of projects in de 80s decade, and framed some of the main concepts and scientific approaches to work organisation. The democratic participation of network and organisations members in the design process is a critical success factor. This is not accepted by everyone, but is based in sufficient case studies. Nevertheless, in order to achieve an optimization that can satisfying the requirements of agility of a network of enterprises, more complex design methods must be developed. Thus, the support to the collaborative design of distributed work in a network of enterprises, through a concurrent approaching business processes, work organisation and task content is a key factor to achieve such purposes. Increasing needs in terms of amounts of information, agility, and support for collaboration without time and space constrains, imposes the use of a computer-based model.business process; networks; decision processes; collaborative design;

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Communities of practice and virtual learning communities : benefits, barriers and success factors

    Get PDF
    A virtual Community of Practice (CoP) is a network of individuals who share a domain of interest about which they communicate online. The practitioners share resources (for example experiences, problems and solutions, tools, methodologies). Such communication results in the improvement of the knowledge of each participant in the community and contributes to the development of the knowledge within the domain. A virtual learning community may involve the conduct of original research but it is more likely that its main purpose is to increase the knowledge of participants, via formal education or professional development. Virtual learning communities could have learning as their main goal or the elearning could be generated as a side effect. Virtual communities of practice (CoPs) and virtual learning communities are becoming widespread within higher education institutions (HEIs) thanks to technological developments which enable increased communication, interactivity among participants and incorporation of collaborative pedagogical models, specifically through information communications technologies (ICTs) They afford the potential for the combination of synchronous and asynchronous communication, access to -and from- geographically isolated communities and international information sharing. Clearly there are benefits to be derived from sharing and learning within and outwith HEIs. There is a sense of connectedness, of shared passion and a deepening of knowledge to be derived from ongoing interaction. Knowledge development can be continuous, cyclical and fluid. However, barriers exist in virtual CoPs and these are defined by the authors and illustrated with quotes from academic staff who have been involved in CoPs. Critical success factors (CSFs) for a virtual CoP are discussed. These include usability of technology; trust in, and acceptance of, ICTs in communication; a sense of belonging among members; paying attention to cross-national and cross-cultural dimensions of the CoP; shared understandings; a common sense of purpose; use of netiquette and user-friendly language and longevity. The authors recognise the enormous potential for the development of CoPs through e-mail discussion lists and discussion boards but have themselves experienced the difficulties inherent in initiating such a community. These are corroborated and illustrated with text from interviews with academic staff. Much of the literature on CoPs emanates from outside Europe, despite the fact that e-learning articles have a large diffusion around Europe. The authors suggest further exploration of this topic by identifying and studying CoPs and virtual learning communities across EU countries

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    corecore