93,914 research outputs found

    An Online Outlier Detection Technique for Wireless Sensor Networks using Unsupervised Quarter-Sphere Support Vector Machine

    Get PDF
    The main challenge faced by outlier detection techniques designed for wireless sensor networks is achieving high detection rate and low false alarm rate while maintaining the resource consumption in the network to a minimum. In this paper, we propose an online outlier detection technique with low computational complexity and memory usage based on an unsupervised centered quarter-sphere support vector machine for real-time environmental monitoring applications of wireless sensor networks. The proposed approach is completely local and thus saves communication overhead and scales well with increase of nodes deployed. We take advantage of spatial correlations that exist in sensor data of adjacent nodes to reduce the false alarm rate in real-time. Experiments with both synthetic and real data collected from the Intel Berkeley Research Laboratory show that our technique achieves better mining performance in terms of parameter selection using different kernel functions compared to an earlier offline outlier detection technique designed for wireless sensor networks

    Joint estimation and localization in sensor networks

    Full text link
    This paper addresses the problem of collaborative tracking of dynamic targets in wireless sensor networks. A novel distributed linear estimator, which is a version of a distributed Kalman filter, is derived. We prove that the filter is mean square consistent in the case of static target estimation. When large sensor networks are deployed, it is common that the sensors do not have good knowledge of their locations, which affects the target estimation procedure. Unlike most existing approaches for target tracking, we investigate the performance of our filter when the sensor poses need to be estimated by an auxiliary localization procedure. The sensors are localized via a distributed Jacobi algorithm from noisy relative measurements. We prove strong convergence guarantees for the localization method and in turn for the joint localization and target estimation approach. The performance of our algorithms is demonstrated in simulation on environmental monitoring and target tracking tasks

    Wireless sensor network for helicopter rotor blade vibration monitoring: Requirements definition and technological aspects

    Get PDF
    The main rotor accounts for the largest vibration source for a helicopter fuselage and its components. However, accurate blade monitoring has been limited due to the practical restrictions on instrumenting rotating blades. The use of Wireless Sensor Networks (WSNs) for real time vibration monitoring promises to deliver a significant contribution to rotor performance monitoring and blade damage identification. This paper discusses the main technological challenges for wireless sensor networks for vibration monitoring on helicopter rotor blades. The first part introduces the context of vibration monitoring on helicopters. Secondly, an overview of the main failure modes for rotor and blades is presented. Based on the requirements for failure modes monitoring, a proposition for a multipurpose sensor network is presented. The network aims to monitor rotor performance, blade integrity and damage accumulation at three different scales referred to as macro layer, meso layer and micro layer. The final part presents the requirements for WSNs design in relation with sensing, processing, communication, actuation and power supply.\u

    On the Relevance of Using Open Wireless Sensor Networks in Environment Monitoring

    Get PDF
    This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks

    Efficient Information Access in Data-Intensive Sensor Networks

    Get PDF
    Recent advances in wireless communications and microelectronics have enabled wide deployment of smart sensor networks. Such networks naturally apply to a broad range of applications that involve system monitoring and information tracking (e.g., fine-grained weather/environmental monitoring, structural health monitoring, urban-scale traffic or parking monitoring, gunshot detection, monitoring volcanic eruptions, measuring rate of melting glaciers, forest fire detection, emergency medical care, disaster response, airport security infrastructure, monitoring of children in metropolitan areas, product transition in warehouse networks etc.).Meanwhile, existing wireless sensor networks (WSNs) perform poorly when the applications have high bandwidth needs for data transmission and stringent delay constraints against the network communication. Such requirements are common for Data Intensive Sensor Networks (DISNs) implementing Mission-Critical Monitoring applications (MCM applications).We propose to enhance existing wireless network standards with flexible query optimization strategies that take into account network constraints and application-specific data delivery patterns in order to meet high performance requirements of MCM applications.In this respect, this dissertation has two major contributions: First, we have developed an algebraic framework called Data Transmission Algebra (DTA) for collision-aware concurrent data transmissions. Here, we have merged the serialization concept from the databases with the knowledge of wireless network characteristics. We have developed an optimizer that uses the DTA framework, and generates an optimal data transmission schedule with respect to latency, throughput, and energy usage. We have extended the DTA framework to handle location-based trust and sensor mobility. We improved DTA scalability with Whirlpool data delivery mechanism, which takes advantage of partitioning of the network. Second, we propose relaxed optimization strategy and develop an adaptive approach to deliver data in data-intensive wireless sensor networks. In particular, we have shown that local actions at nodes help network to adapt in worse network conditions and perform better. We show that local decisions at the nodes can converge towards desirable global network properties e.g.,high packet success ratio for the network. We have also developed a network monitoring tool to assess the state and dynamic convergence of the WSN, and force it towards better performance

    Design and Implementation of a Wireless Sensor Network for Smart Homes

    Full text link
    Wireless sensor networks (WSNs) have become indispensable to the realization of smart homes. The objective of this paper is to develop such a WSN that can be used to construct smart home systems. The focus is on the design and implementation of the wireless sensor node and the coordinator based on ZigBee technology. A monitoring system is built by taking advantage of the GPRS network. To support multi-hop communications, an improved routing algorithm based on the Dijkstra algorithm is presented. Preliminary simulations have been conducted to evaluate the performance of the algorithm.Comment: International Workshop on Mobile Cyber-Physical Systems (MobiCPS 2010), in conjunction with UIC2010, IEEE, Xi'an, China, 26 - 29 October, 201

    Micro Sensor Node for Air Pollutant Monitoring: Hardware and Software Issues

    Get PDF
    Wireless sensor networks equipped with various gas sensors have been actively used for air quality monitoring. Previous studies have typically explored system issues that include middleware or networking performance, but most research has barely considered the details of the hardware and software of the sensor node itself. In this paper, we focus on the design and implementation of a sensor board for air pollutant monitoring applications. Several hardware and software issues are discussed to explore the possibilities of a practical WSN-based air pollution monitoring system. Through extensive experiments and evaluation, we have determined the various characteristics of the gas sensors and their practical implications for air pollutant monitoring systems

    Routing protocols and quality of services for security based applications using wireless video sensor networks

    Get PDF
    Wireless video sensor networks have been a hot topic in recent years; the monitoring capability is the central feature of the services offered by a wireless video sensor network can be classified into three major categories: monitoring, alerting, and information on-demand. These features have been applied to a large number of applications related to the environment (agriculture, water, forest and fire detection), military, buildings, health (elderly people and home monitoring), disaster relief, area and industrial monitoring. Security applications oriented toward critical infrastructures and disaster relief are very important applications that many countries have identified as critical in the near future. This paper aims to design a cross layer based protocol to provide the required quality of services for security related applications using wireless video sensor networks. Energy saving, delay and reliability for the delivered data are crucial in the proposed application. Simulation results show that the proposed cross layer based protocol offers a good performance in term of providing the required quality of services for the proposed application
    corecore