95,214 research outputs found

    A new variance-based approach for discriminative feature extraction in machine hearing classification using spectrogram features

    Get PDF
    Machine hearing is an emerging research field that is analogous to machine vision in that it aims to equip computers with the ability to hear and recognise a variety of sounds. It is a key enabler of natural human–computer speech interfacing, as well as in areas such as automated security surveillance, environmental monitoring, smart homes/buildings/cities. Recent advances in machine learning allow current systems to accurately recognise a diverse range of sounds under controlled conditions. However doing so in real-world noisy conditions remains a challenging task. Several front–end feature extraction methods have been used for machine hearing, employing speech recognition features like MFCC and PLP, as well as image-like features such as AIM and SIF. The best choice of feature is found to be dependent upon the noise environment and machine learning techniques used. Machine learning methods such as deep neural networks have been shown capable of inferring discriminative classification rules from less structured front–end features in related domains. In the machine hearing field, spectrogram image features have recently shown good performance for noise-corrupted classification using deep neural networks. However there are many methods of extracting features from spectrograms. This paper explores a novel data-driven feature extraction method that uses variance-based criteria to define spectral pooling of features from spectrograms. The proposed method, based on maximising the pooled spectral variance of foreground and background sound models, is shown to achieve very good performance for robust classification

    Stress and accent in language production and understanding

    Get PDF

    DeepASL: Enabling Ubiquitous and Non-Intrusive Word and Sentence-Level Sign Language Translation

    Full text link
    There is an undeniable communication barrier between deaf people and people with normal hearing ability. Although innovations in sign language translation technology aim to tear down this communication barrier, the majority of existing sign language translation systems are either intrusive or constrained by resolution or ambient lighting conditions. Moreover, these existing systems can only perform single-sign ASL translation rather than sentence-level translation, making them much less useful in daily-life communication scenarios. In this work, we fill this critical gap by presenting DeepASL, a transformative deep learning-based sign language translation technology that enables ubiquitous and non-intrusive American Sign Language (ASL) translation at both word and sentence levels. DeepASL uses infrared light as its sensing mechanism to non-intrusively capture the ASL signs. It incorporates a novel hierarchical bidirectional deep recurrent neural network (HB-RNN) and a probabilistic framework based on Connectionist Temporal Classification (CTC) for word-level and sentence-level ASL translation respectively. To evaluate its performance, we have collected 7,306 samples from 11 participants, covering 56 commonly used ASL words and 100 ASL sentences. DeepASL achieves an average 94.5% word-level translation accuracy and an average 8.2% word error rate on translating unseen ASL sentences. Given its promising performance, we believe DeepASL represents a significant step towards breaking the communication barrier between deaf people and hearing majority, and thus has the significant potential to fundamentally change deaf people's lives

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft
    • …
    corecore