137 research outputs found

    Design Issues for Peer-to-Peer Massively Multiplayer Online Games.

    Get PDF
    Massively Multiplayer Online Games (MMOGs) are increasing in both popularity and scale, and while classical Client/Server (C/S) architectures convey some benefits, they suffer from significant technical and commercial drawbacks. This realisation has sparked intensive research interest in adapting MMOGs to Peer-to-Peer (P2P) architectures. This paper articulates a comprehensive set of six design issues to be addressed by P2P MMOGs, namely Interest Management (IM), game event dissemination, Non-Player Character (NPC) host allocation, game state persistency, cheating mitigation and incentive mechanisms. Design alternatives for each issue are systematically compared, and their interrelationships discussed. We further evaluate how well representative P2P MMOG architectures fulfil the design criteria

    Middleware services for distributed virtual environments

    Get PDF
    PhD ThesisDistributed Virtual Environments (DVEs) are virtual environments which allow dispersed users to interact with each other and the virtual world through the underlying network. Scalability is a major challenge in building a successful DVE, which is directly affected by the volume of message exchange. Different techniques have been deployed to reduce the volume of message exchange in order to support large numbers of simultaneous participants in a DVE. Interest management is a popular technique for filtering unnecessary message exchange between users. The rationale behind interest management is to resolve the "interests" of users and decide whether messages should be exchanged between them. There are three basic interest management approaches: region-based, aura-based and hybrid approaches. However, if the time taken for an interest management approach to determine interests is greater than the duration of the interaction, it is not possible to guarantee interactions will occur correctly or at all. This is termed the Missed Interaction Problem, which all existing interest management approaches are susceptible to. This thesis provides a new aura-based interest management approach, termed Predictive Interest management (PIM), to alleviate the missed interaction problem. PIM uses an enlarged aura to detect potential aura-intersections and iii initiate message exchange. It utilises variable message exchange frequencies, proportional to the intersection degree of the objects' expanded auras, to restrict bandwidth usage. This thesis provides an experimental system, the PIM system, which couples predictive interest management with the de-centralised server communication model. It utilises the Common Object Request Broker Architecture (CORBA) middleware standard to provide an interoperable middleware for DVEs. Experimental results are provided to demonstrate that PIM provides a scalable interest management approach which alleviates the missed interaction problem

    Middleware services for distributed virtual environments

    Get PDF
    PhD ThesisDistributed Virtual Environments (DVEs) are virtual environments which allow dispersed users to interact with each other and the virtual world through the underlying network. Scalability is a major challenge in building a successful DVE, which is directly affected by the volume of message exchange. Different techniques have been deployed to reduce the volume of message exchange in order to support large numbers of simultaneous participants in a DVE. Interest management is a popular technique for filtering unnecessary message exchange between users. The rationale behind interest management is to resolve the "interests" of users and decide whether messages should be exchanged between them. There are three basic interest management approaches: region-based, aura-based and hybrid approaches. However, if the time taken for an interest management approach to determine interests is greater than the duration of the interaction, it is not possible to guarantee interactions will occur correctly or at all. This is termed the Missed Interaction Problem, which all existing interest management approaches are susceptible to. This thesis provides a new aura-based interest management approach, termed Predictive Interest management (PIM), to alleviate the missed interaction problem. PIM uses an enlarged aura to detect potential aura-intersections and iii initiate message exchange. It utilises variable message exchange frequencies, proportional to the intersection degree of the objects' expanded auras, to restrict bandwidth usage. This thesis provides an experimental system, the PIM system, which couples predictive interest management with the de-centralised server communication model. It utilises the Common Object Request Broker Architecture (CORBA) middleware standard to provide an interoperable middleware for DVEs. Experimental results are provided to demonstrate that PIM provides a scalable interest management approach which alleviates the missed interaction problem

    Commonalities between networking in multiplayer computer games and negotiation processes in a future multi-layered Air Traffic Management (ATM) system

    Get PDF
    First, this paper describes a future layered Air Traffic Management (ATM) system centred in the execution phase of flights. The layered ATM model is based on the work currently performed by SESAR [1] and takes into account the availability of accurate and updated flight information ?seen by all? across the European airspace. This shared information of each flight will be referred as Reference Business Trajectory (RBT). In the layered ATM system, exchanges of information will involve several actors (human or automatic), which will have varying time horizons, areas of responsibility and tasks. Second, the paper will identify the need to define the negotiation processes required to agree revisions to the RBT in the layered ATM system. Third, the final objective of the paper is to bring to the attention of researchers and engineers the communalities between multi-player games and Collaborative Decision Making processes (CDM) in a layered ATM syste

    Distributed shared memory for virtual environments

    Get PDF
    Bibliography: leaves 71-77.This work investigated making virtual environments easier to program, by designing a suitable distributed shared memory system. To be usable, the system must keep latency to a minimum, as virtual environments are very sensitive to it. The resulting design is push-based and non-consistent. Another requirement is that the system should be scaleable, over large distances and over large numbers of participants. The latter is hard to achieve with current network protocols, and a proposal was made for a more scaleable multicast addressing system than is used in the Internet protocol. Two sample virtual environments were developed to test the ease-of-use of the system. This showed that the basic concept is sound, but that more support is needed. The next step should be to extend the language and add compiler support, which will enhance ease-of-use and allow numerous optimisations. This can be improved further by providing system-supported containers

    Network architecture for large-scale distributed virtual environments

    Get PDF
    Distributed Virtual Environments (DVEs) provide 3D graphical computer generated environments with stereo sound, supporting real-time collaboration between potentially large numbers of users distributed around the world. Early DVEs has been used over local area networks (LANs). Recently with the Internet's development into the most common embedding for DVEs these distributed applications have been moved towards an exploiting IP networks. This has brought the scalability challenges into the DVEs evolution. The network bandwidth resource is the more limited resource of the DVE system and to improve the DVE's scalability it is necessary to manage carefully this resource. To achieve the saving in the network bandwidth the different types of the network traffic that is produced by the DVEs have to be considered. DVE applications demand· exchange of the data that forms different types of traffic such as a computer data type, video and audio, and a 3D data type to keep the consistency of the application's state. The problem is that the meeting of the QoS requirements of both control and continuous media traffic already have been covered by the existing research. But QoS for transfer of the 3D information has not really been considered. The 3D DVE geometry traffic is very bursty in nature and places a high demands on the network for short intervals of time due to the quite large size of the 3D models and the DVE application requirements to transmit a 3D data as quick as possible. The main motivation in carrying out the work presented in this thesis is to find a solution to improve the scalability of the DVE applications by a consideration the QoS requirements of the 3D DVE geometrical data type. In this work we are investigating the possibility to decrease the network bandwidth utilization by the 3D DVE traffic using the level of detail (LOD) concept and the active networking approach. The background work of the thesis surveys the DVE applications and the scalability requirements of the DVE systems. It also discusses the active networks and multiresolution representation and progressive transmission of the 3D data. The new active networking approach to the transmission of the 3D geometry data within the DVE systems is proposed in this thesis. This approach enhances the currently applied peer-to-peer DVE architecture by adding to the peer-to-peer multicast neny_ork layer filtering of the 3D flows an application level filtering on the active intermediate nodes. The active router keeps the application level information about the placements of users. This information is used by active routers to prune more detailed 3D data flows (higher LODs) in the multicast tree arches that are linked to the distance DVE participants. The exploration of possible benefits of exploiting the proposed active approach through the comparison with the non-active approach is carried out using the simulation­based performance modelling approach. Complex interactions between participants in DVE application and a large number of analyzed variables indicate that flexible simulation is more appropriate than mathematical modelling. To build a test bed will not be feasible. Results from the evaluation demonstrate that the proposed active approach shows potential benefits to the improvement of the DVE's scalability but the degree of improvement depends on the users' movement pattern. Therefore, other active networking methods to support the 3D DVE geometry transmission may also be required
    corecore