4,406 research outputs found

    Value-driven Security Agreements in Extended Enterprises

    Get PDF
    Today organizations are highly interconnected in business networks called extended enterprises. This is mostly facilitated by outsourcing and by new economic models based on pay-as-you-go billing; all supported by IT-as-a-service. Although outsourcing has been around for some time, what is now new is the fact that organizations are increasingly outsourcing critical business processes, engaging on complex service bundles, and moving infrastructure and their management to the custody of third parties. Although this gives competitive advantage by reducing cost and increasing flexibility, it increases security risks by eroding security perimeters that used to separate insiders with security privileges from outsiders without security privileges. The classical security distinction between insiders and outsiders is supplemented with a third category of threat agents, namely external insiders, who are not subject to the internal control of an organization but yet have some access privileges to its resources that normal outsiders do not have. Protection against external insiders requires security agreements between organizations in an extended enterprise. Currently, there is no practical method that allows security officers to specify such requirements. In this paper we provide a method for modeling an extended enterprise architecture, identifying external insider roles, and for specifying security requirements that mitigate security threats posed by these roles. We illustrate our method with a realistic example

    A model for the analysis of security policies in service function chains

    Full text link
    Two emerging architectural paradigms, i.e., Software Defined Networking (SDN) and Network Function Virtualization (NFV), enable the deployment and management of Service Function Chains (SFCs). A SFC is an ordered sequence of abstract Service Functions (SFs), e.g., firewalls, VPN-gateways,traffic monitors, that packets have to traverse in the route from source to destination. While this appealing solution offers significant advantages in terms of flexibility, it also introduces new challenges such as the correct configuration and ordering of SFs in the chain to satisfy overall security requirements. This paper presents a formal model conceived to enable the verification of correct policy enforcements in SFCs. Software tools based on the model can then be designed to cope with unwanted network behaviors (e.g., security flaws) deriving from incorrect interactions of SFs in the same SFC

    A Practical Approach to Protect IoT Devices against Attacks and Compile Security Incident Datasets

    Get PDF
    open access articleThe Internet of Things (IoT) introduced the opportunity of remotely manipulating home appliances (such as heating systems, ovens, blinds, etc.) using computers and mobile devices. This idea fascinated people and originated a boom of IoT devices together with an increasing demand that was difficult to support. Many manufacturers quickly created hundreds of devices implementing functionalities but neglected some critical issues pertaining to device security. This oversight gave rise to the current situation where thousands of devices remain unpatched having many security issues that manufacturers cannot address after the devices have been produced and deployed. This article presents our novel research protecting IOT devices using Berkeley Packet Filters (BPFs) and evaluates our findings with the aid of our Filter.tlk tool, which is able to facilitate the development of BPF expressions that can be executed by GNU/Linux systems with a low impact on network packet throughput

    Diagnose network failures via data-plane analysis

    Get PDF
    Diagnosing problems in networks is a time-consuming and error-prone process. Previous tools to assist operators primarily focus on analyzing control plane configuration. Configuration analysis is limited in that it cannot find bugs in router software, and is harder to generalize across protocols since it must model complex configuration languages and dynamic protocol behavior. This paper studies an alternate approach: diagnosing problems through static analysis of the data plane. This approach can catch bugs that are invisible at the level of configuration files, and simplifies unified analysis of a network across many protocols and implementations. We present Anteater, a tool for checking invariants in the data plane. Anteater translates high-level network invariants into boolean satisfiability problems, checks them against network state using a SAT solver, and reports counterexamples if violations have been found. Applied to a large campus network, Anteater revealed 23 bugs, including forwarding loops and stale ACL rules, with only five false positives. Nine of these faults are being fixed by campus network operators
    corecore