17,330 research outputs found

    Calibration Probe Uncertainty and Validation for the Hypersonic Material Environmental Test System

    Get PDF
    This paper presents an uncertainty analysis of the stagnation-point calibration probe surface predictions for conditions that span the performance envelope of the Hypersonic Materials Environmental Test System facility located at NASA Langley Research Center. A second-order stochastic expansion was constructed over 47 uncertain parameters to evaluate the sensitivities, identify the most significant uncertain variables, and quantify the uncertainty in the stagnation-point heat flux and pressure predictions of the calibration probe for a low- and high-enthalpy test condition. A sensitivity analysis showed that measurement bias uncertainty is the most significant contributor to the stagnation-point pressure and heat flux variance for the low-enthalpy condition. For the high-enthalpy condition, a paradigm shift in sensitivities revealed the computational fluid dynamics model input uncertainty as the main contributor. A comparison between the prediction and measurement of the stagnation-point conditions under uncertainty showed that there was evidence of statistical disagreement. A validation metric was proposed and applied to the prediction uncertainty to account for the statistical disagreement when compared to the possible stagnation-point heat flux and pressure measurements

    Polynomial-Chaos-based Kriging

    Full text link
    Computer simulation has become the standard tool in many engineering fields for designing and optimizing systems, as well as for assessing their reliability. To cope with demanding analysis such as optimization and reliability, surrogate models (a.k.a meta-models) have been increasingly investigated in the last decade. Polynomial Chaos Expansions (PCE) and Kriging are two popular non-intrusive meta-modelling techniques. PCE surrogates the computational model with a series of orthonormal polynomials in the input variables where polynomials are chosen in coherency with the probability distributions of those input variables. On the other hand, Kriging assumes that the computer model behaves as a realization of a Gaussian random process whose parameters are estimated from the available computer runs, i.e. input vectors and response values. These two techniques have been developed more or less in parallel so far with little interaction between the researchers in the two fields. In this paper, PC-Kriging is derived as a new non-intrusive meta-modeling approach combining PCE and Kriging. A sparse set of orthonormal polynomials (PCE) approximates the global behavior of the computational model whereas Kriging manages the local variability of the model output. An adaptive algorithm similar to the least angle regression algorithm determines the optimal sparse set of polynomials. PC-Kriging is validated on various benchmark analytical functions which are easy to sample for reference results. From the numerical investigations it is concluded that PC-Kriging performs better than or at least as good as the two distinct meta-modeling techniques. A larger gain in accuracy is obtained when the experimental design has a limited size, which is an asset when dealing with demanding computational models
    corecore