6,442 research outputs found

    Prioritized Garbage Collection: Explicit GC Support for Software Caches

    Full text link
    Programmers routinely trade space for time to increase performance, often in the form of caching or memoization. In managed languages like Java or JavaScript, however, this space-time tradeoff is complex. Using more space translates into higher garbage collection costs, especially at the limit of available memory. Existing runtime systems provide limited support for space-sensitive algorithms, forcing programmers into difficult and often brittle choices about provisioning. This paper presents prioritized garbage collection, a cooperative programming language and runtime solution to this problem. Prioritized GC provides an interface similar to soft references, called priority references, which identify objects that the collector can reclaim eagerly if necessary. The key difference is an API for defining the policy that governs when priority references are cleared and in what order. Application code specifies a priority value for each reference and a target memory bound. The collector reclaims references, lowest priority first, until the total memory footprint of the cache fits within the bound. We use this API to implement a space-aware least-recently-used (LRU) cache, called a Sache, that is a drop-in replacement for existing caches, such as Google's Guava library. The garbage collector automatically grows and shrinks the Sache in response to available memory and workload with minimal provisioning information from the programmer. Using a Sache, it is almost impossible for an application to experience a memory leak, memory pressure, or an out-of-memory crash caused by software caching.Comment: to appear in OOPSLA 201

    Coded Caching for Delay-Sensitive Content

    Full text link
    Coded caching is a recently proposed technique that achieves significant performance gains for cache networks compared to uncoded caching schemes. However, this substantial coding gain is attained at the cost of large delivery delay, which is not tolerable in delay-sensitive applications such as video streaming. In this paper, we identify and investigate the tradeoff between the performance gain of coded caching and the delivery delay. We propose a computationally efficient caching algorithm that provides the gains of coding and respects delay constraints. The proposed algorithm achieves the optimum performance for large delay, but still offers major gains for small delay. These gains are demonstrated in a practical setting with a video-streaming prototype.Comment: 9 page

    Trace-level reuse

    Get PDF
    Trace-level reuse is based on the observation that some traces (dynamic sequences of instructions) are frequently repeated during the execution of a program, and in many cases, the instructions that make up such traces have the same source operand values. The execution of such traces will obviously produce the same outcome and thus, their execution can be skipped if the processor records the outcome of previous executions. This paper presents an analysis of the performance potential of trace-level reuse and discusses a preliminary realistic implementation. Like instruction-level reuse, trace-level reuse can improve performance by decreasing resource contention and the latency of some instructions. However, we show that trace-level reuse is more effective than instruction-level reuse because the former can avoid fetching the instructions of reused traces. This has two important benefits: it reduces the fetch bandwidth requirements, and it increases the effective instruction window size since these instructions do not occupy window entries. Moreover, trace-level reuse can compute all at once the result of a chain of dependent instructions, which may allow the processor to avoid the serialization caused by data dependences and thus, to potentially exceed the dataflow limit.Peer ReviewedPostprint (published version

    Online Reinforcement Learning of X-Haul Content Delivery Mode in Fog Radio Access Networks

    Get PDF
    We consider a Fog Radio Access Network (F-RAN) with a Base Band Unit (BBU) in the cloud and multiple cache-enabled enhanced Remote Radio Heads (eRRHs). The system aims at delivering contents on demand with minimal average latency from a time-varying library of popular contents. Information about uncached requested files can be transferred from the cloud to the eRRHs by following either backhaul or fronthaul modes. The backhaul mode transfers fractions of the requested files, while the fronthaul mode transmits quantized baseband samples as in Cloud-RAN (C-RAN). The backhaul mode allows the caches of the eRRHs to be updated, which may lower future delivery latencies. In contrast, the fronthaul mode enables cooperative C-RAN transmissions that may reduce the current delivery latency. Taking into account the trade-off between current and future delivery performance, this paper proposes an adaptive selection method between the two delivery modes to minimize the long-term delivery latency. Assuming an unknown and time-varying popularity model, the method is based on model-free Reinforcement Learning (RL). Numerical results confirm the effectiveness of the proposed RL scheme.Comment: 5 pages, 2 figure

    Soft Cache Hits and the Impact of Alternative Content Recommendations on Mobile Edge Caching

    Full text link
    Caching popular content at the edge of future mobile networks has been widely considered in order to alleviate the impact of the data tsunami on both the access and backhaul networks. A number of interesting techniques have been proposed, including femto-caching and "delayed" or opportunistic cache access. Nevertheless, the majority of these approaches suffer from the rather limited storage capacity of the edge caches, compared to the tremendous and rapidly increasing size of the Internet content catalog. We propose to depart from the assumption of hard cache misses, common in most existing works, and consider "soft" cache misses, where if the original content is not available, an alternative content that is locally cached can be recommended. Given that Internet content consumption is increasingly entertainment-oriented, we believe that a related content could often lead to complete or at least partial user satisfaction, without the need to retrieve the original content over expensive links. In this paper, we formulate the problem of optimal edge caching with soft cache hits, in the context of delayed access, and analyze the expected gains. We then show using synthetic and real datasets of related video contents that promising caching gains could be achieved in practice
    • …
    corecore