87 research outputs found

    Authentication Protocols and Privacy Protection

    Get PDF
    Tato dizertační práce se zabývá kryptografickými prostředky pro autentizaci. Hlavním tématem však nejsou klasické autentizační protokoly, které nabízejí pouze ověření identity, ale tzv. atributové autentizační systémy, pomocí kterých mohou uživatelé prokazovat svoje osobní atributy. Tyto atributy pak mohou představovat jakékoliv osobní informace, např. věk, národnost či místo narození. Atributy mohou být prokazovány anonymně a s podporou mnoha funkcí na ochranu digitální identity. Mezi takové funkce patří např. nespojitelnost autentizačních relací, nesledovatelnost, možnost výběru prokazovaných atributů či efektivní revokace. Atributové autentizační systémy jsou již nyní považovány za nástupce současných systémů v oficiálních strategických plánech USA (NSTIC) či EU (ENISA). Část požadovaných funkcí je již podporována existujícími kryptografickými koncepty jako jsou U-Prove či idemix. V současné době však není známý systém, který by poskytoval všechny potřebné funkce na ochranu digitální identity a zároveň byl prakticky implementovatelný na zařízeních, jako jsou čipové karty. Mezi klíčové slabiny současných systémů patří především chybějící nespojitelnost relací a absence revokace. Není tak možné efektivně zneplatnit zaniklé uživatele, ztracené či ukradené autentizační karty či karty škodlivých uživatelů. Z těchto důvodů je v této práci navrženo kryptografické schéma, které řeší slabiny nalezené při analýze existujících řešení. Výsledné schéma, jehož návrh je založen na ověřených primitivech, jako jsou Σ\Sigma-protokoly pro důkazy znalostí, kryptografické závazky či ověřitelné šifrování, pak podporuje všechny požadované vlastnosti pro ochranu soukromí a digitální identity. Zároveň je však návrh snadno implementovatelný v prostředí smart-karet. Tato práce obsahuje plný kryptografický návrh systému, formální ověření klíčových vlastností, matematický model schématu v programu Mathematica pro ověření funkčnosti a výsledky experimentální implementace v prostředí .NET smart-karet. I přesto, že navrhovaný systém obsahuje podporu všech funkcí na ochranu soukromí, včetně těch, které chybí u existujících systémů, jeho výpočetní složitost zůstává stejná či nižší, doba ověření uživatele je tedy kratší než u existujících systémů. Výsledkem je schéma, které může velmi znatelně zvýšit ochranu soukromí uživatelů při jejich ověřování, především při využití v elektronických dokladech, přístupových systémech či Internetových službách.This dissertation thesis deals with the cryptographic constructions for user authentication. Rather than classical authentication protocols which allow only the identity verification, the attribute authentication systems are the main topic of this thesis. The attribute authentication systems allow users to give proofs about the possession of personal attributes. These attributes can represent any personal information, for example age, nationality or birthplace. The attribute ownership can be proven anonymously and with the support of many features for digital identity protection. These features include, e.g., the unlinkability of verification sessions, untraceability, selective disclosure of attributes or efficient revocation. Currently, the attribute authentication systems are considered to be the successors of existing authentication systems by the official strategies of USA (NSTIC) and EU (ENISA). The necessary features are partially provided by existing cryptographic concepts like U-Prove and idemix. But at this moment, there is no system providing all privacy-enhancing features which is implementable on computationally restricted devices like smart-cards. Among all weaknesses of existing systems, the missing unlinkability of verification sessions and the absence of practical revocation are the most critical ones. Without these features, it is currently impossible to invalidate expired users, lost or stolen authentication cards and cards of malicious users. Therefore, a new cryptographic scheme is proposed in this thesis to fix the weaknesses of existing schemes. The resulting scheme, which is based on established primitives like Σ\Sigma-protocols for proofs of knowledge, cryptographic commitments and verifiable encryption, supports all privacy-enhancing features. At the same time, the scheme is easily implementable on smart-cards. This thesis includes the full cryptographic specification, the formal verification of key properties, the mathematical model for functional verification in Mathematica software and the experimental implementation on .NET smart-cards. Although the scheme supports all privacy-enhancing features which are missing in related work, the computational complexity is the same or lower, thus the time of verification is shorter than in existing systems. With all these features and properties, the resulting scheme can significantly improve the privacy of users during their verification, especially when used in electronic ID systems, access systems or Internet services.

    Scaling Distributed Ledgers and Privacy-Preserving Applications

    Get PDF
    This thesis proposes techniques aiming to make blockchain technologies and smart contract platforms practical by improving their scalability, latency, and privacy. This thesis starts by presenting the design and implementation of Chainspace, a distributed ledger that supports user defined smart contracts and execute user-supplied transactions on their objects. The correct execution of smart contract transactions is publicly verifiable. Chainspace is scalable by sharding state; it is secure against subsets of nodes trying to compromise its integrity or availability properties through Byzantine Fault Tolerance (BFT). This thesis also introduces a family of replay attacks against sharded distributed ledgers targeting cross-shard consensus protocols; they allow an attacker, with network access only, to double-spend resources with minimal efforts. We then build Byzcuit, a new cross-shard consensus protocol that is immune to those attacks and that is tailored to run at the heart of Chainspace. Next, we propose FastPay, a high-integrity settlement system for pre-funded payments that can be used as a financial side-infrastructure for Chainspace to support low-latency retail payments. This settlement system is based on Byzantine Consistent Broadcast as its core primitive, foregoing the expenses of full atomic commit channels (consensus). The resulting system has extremely low-latency for both confirmation and payment finality. Finally, this thesis proposes Coconut, a selective disclosure credential scheme supporting distributed threshold issuance, public and private attributes, re-randomization, and multiple unlinkable selective attribute revelations. It ensures authenticity and availability even when a subset of credential issuing authorities are malicious or offline, and natively integrates with Chainspace to enable a number of scalable privacy-preserving applications

    With a Little Help from My Friends: Constructing Practical Anonymous Credentials

    Get PDF
    Anonymous credentials (ACs) are a powerful cryptographic tool for the secure use of digital services, when simultaneously aiming for strong privacy guarantees of users combined with strong authentication guarantees for providers of services. They allow users to selectively prove possession of attributes encoded in a credential without revealing any other meaningful information about themselves. While there is a significant body of research on AC systems, modern use-cases of ACs such as mobile applications come with various requirements not sufficiently considered so far. These include preventing the sharing of credentials and coping with resource constraints of the platforms (e.g., smart cards such as SIM cards in smartphones). Such aspects are typically out of scope of AC constructions, and, thus AC systems that can be considered entirely practical have been elusive so far. In this paper we address this problem by introducing and formalizing the notion of core/helper anonymous credentials (CHAC). The model considers a constrained core device (e.g., a SIM card) and a powerful helper device (e.g., a smartphone). The key idea is that the core device performs operations that do not depend on the size of the credential or the number of attributes, but at the same time the helper device is unable to use the credential without its help. We present a provably secure generic construction of CHACs using a combination of signatures with flexible public keys (SFPK) and the novel notion of aggregatable attribute-based equivalence class signatures (AAEQ) along with a concrete instantiation. The key characteristics of our scheme are that the size of showing tokens is independent of the number of attributes in the credential(s) and that the core device only needs to compute a single elliptic curve scalar multiplication, regardless of the number of attributes. We confirm the practical efficiency of our CHACs with an implementation of our scheme on a Multos smart card as the core and an Android smartphone as the helper device. A credential showing requires less than 500 ms on the smart card and around 200 ms on the smartphone (even for a credential with 1000 attributes)

    Cryptographic Protection of Digital Identity

    Get PDF
    Dizertační práce se zabývá kryptografickými schématy zvyšující ochranu soukromí uživatelů v systémech řízení přístupu a sběru dat. V současnosti jsou systémy fyzického řízení přístupu na bázi čipových karet využívány téměř dennodenně většinou z nás, například v zaměstnání, ve veřejné dopravě a v hotelech. Tyto systémy však stále neposkytují dostatečnou kryptografickou ochranu a tedy bezpečnost. Uživatelské identifikátory a klíče lze snadno odposlechnout a padělat. Funkce, které by zajišťovaly ochranu soukromí uživatele, téměř vždy chybí. Proto je zde reálné riziko možného sledovaní lidí, jejich pohybu a chovaní. Poskytovatelé služeb nebo případní útočníci, kteří odposlouchávají komunikaci, mohou vytvářet profily uživatelů, ví, co dělají, kde se pohybují a o co se zajímají. Za účelem zlepšení tohoto stavu jsme navrhli čtyři nová kryptografická schémata založená na efektivních důkazech s nulovou znalostí a kryptografii eliptických křivek. Konkrétně dizertační práce prezentuje tři nová autentizační schémata pro využití v systémech řízení přístupu a jedno nové schéma pro využití v systémech sběru dat. První schéma využívá distribuovaný autentizační přístup vyžadující spolupráci více RFID prvků v autentizačním procesu. Tato vlastnost je výhodná zvláště v případech řízení přístupu do nebezpečných prostor, kdy pro povolení přístupu uživatele je nezbytné, aby byl uživatel vybaven ochrannými pomůckami (se zabudovanými RFID prvky). Další dvě schémata jsou založena na atributovém způsobu ověření, tj. schémata umožňují anonymně prokázat vlastnictví atributů uživatele, jako je věk, občanství a pohlaví. Zatím co jedno schéma implementuje efektivní revokační a identifikační mechanismy, druhé schéma poskytuje nejrychlejší verifikaci držení uživatelských atributů ze všech současných řešení. Poslední, čtvrté schéma reprezentuje schéma krátkého skupinového podpisu pro scénář sběru dat. Schémata sběru dat se používají pro bezpečný a spolehlivý přenos dat ze vzdálených uzlů do řídící jednotky. S rostoucím významem chytrých měřičů v energetice, inteligentních zařízení v domácnostech a rozličných senzorových sítí, se potřeba bezpečných systémů sběru dat stává velmi naléhavou. Tato schémata musí podporovat nejen standardní bezpečnostní funkce, jako je důvěrnost a autentičnost přenášených dat, ale také funkce nové, jako je silná ochrana soukromí a identity uživatele či identifikace škodlivých uživatelů. Navržená schémata jsou prokazatelně bezpečná a nabízí celou řadu funkcí rozšiřující ochranu soukromí a identity uživatele, jmenovitě se pak jedná o zajištění anonymity, nesledovatelnosti a nespojitelnosti jednotlivých relací uživatele. Kromě úplné kryptografické specifikace a bezpečnostní analýzy navržených schémat, obsahuje tato práce také výsledky měření implementací jednotlivých schémat na v současnosti nejpoužívanějších zařízeních v oblasti řízení přístupu a sběru dat.The doctoral thesis deals with privacy-preserving cryptographic schemes in access control and data collection areas. Currently, card-based physical access control systems are used by most people on a daily basis, for example, at work, in public transportation and at hotels. However, these systems have often very poor cryptographic protection. For instance, user identifiers and keys can be easily eavesdropped and counterfeited. Furthermore, privacy-preserving features are almost missing and, therefore, user’s movement and behavior can by easily tracked. Service providers (and even eavesdroppers) can profile users, know what they do, where they go, and what they are interested in. In order to improve this state, we propose four novel cryptographic schemes based on efficient zero-knowledge proofs and elliptic curve cryptography. In particular, the thesis presents three novel privacy-friendly authentication schemes for access control and one for data collection application scenarios. The first scheme supports distributed multi-device authentication with multiple Radio-Frequency IDentification (RFID) user’s devices. This feature is particularly important in applications for controlling access to dangerous areas where the presence of protective equipment is checked during each access control session. The other two presented schemes use attribute-based approach to protect user’s privacy, i.e. these schemes allow users to anonymously prove the ownership of their attributes, such as age, citizenship, and gender. While one of our scheme brings efficient revocation and identification mechanisms, the other one provides the fastest authentication phase among the current state of the art solutions. The last (fourth) proposed scheme is a novel short group signature scheme for data collection scenarios. Data collection schemes are used for secure and reliable data transfer from multiple remote nodes to a central unit. With the increasing importance of smart meters in energy distribution, smart house installations and various sensor networks, the need for secure data collection schemes becomes very urgent. Such schemes must provide standard security features, such as confidentiality and authenticity of transferred data, as well as novel features, such as strong protection of user’s privacy and identification of malicious users. The proposed schemes are provably secure and provide the full set of privacy-enhancing features, namely anonymity, untraceability and unlinkability of users. Besides the full cryptographic specification and security analysis, we also show the results of our implementations on devices commonly used in access control and data collection applications.

    Practical backward unlinkable revocation in FIDO, German e-ID, Idemix and U-Prove

    Get PDF
    FIDO, German e-ID, Idemix and U-Prove constitute privacy-enhanced public-key infrastructures allowing users to authenticate in an anonymous way. This however hampers timely revocation in a privacy friendly way. From a legal perspective, revocation typically should be effective within 24 hours after user reporting. It should also be backward unlinkable, i.e. user anonymity cannot be removed after revocation. We describe a new, generic revocation mechanism based on pairing based encryption and apply it to supplement the systems mentioned. This allows for both flexible and privacy friendly revocation. Protocol execution takes less than a quarter of a second on modern smartcards. An additional property is that usage after revocation is linkable, allowing users to identify fraudulent usage after revocation. Our technique is the first Verifier Local Revocation scheme with backwards unlinkable revocation for the systems mentioned. This also allows for a setup resembling the well-known Online Certificate Status Protocol (OCSP). Here the service provider sends a pseudonym to a revocation provider that returns its status. As the information required for this is not secret the status service can be distributed over many cloud services. In addition to the status service our technique also supports the publication of a central revocation list

    Interdomain User Authentication and Privacy

    Get PDF
    This thesis looks at the issue of interdomain user authentication, i.e. user authentication in systems that extend over more than one administrative domain. It is divided into three parts. After a brief overview of related literature, the first part provides a taxonomy of current approaches to the problem. The taxonomy is first used to identify the relative strengths and weaknesses of each approach, and then employed as the basis for putting into context four concrete and novel schemes that are subsequently proposed in this part of the thesis. Three of these schemes build on existing technology; the first on 2nd and 3rd-generation cellular (mobile) telephony, the second on credit/debit smartcards, and the third on Trusted Computing. The fourth scheme is, in certain ways, different from the others. Most notably, unlike the other three schemes, it does not require the user to possess tamper-resistant hardware, and it is suitable for use from an untrusted access device. An implementation of the latter scheme (which works as a web proxy) is also described in this part of the thesis. As the need to preserve one’s privacy continues to gain importance in the digital world, it is important to enhance user authentication schemes with properties that enable users to remain anonymous (yet authenticated). In the second part of the thesis, anonymous credential systems are identified as a tool that can be used to achieve this goal. A formal model that captures relevant security and privacy notions for such systems is proposed. From this model, it is evident that there exist certain inherent limits to the privacy that such systems can offer. These are examined in more detail, and a scheme is proposed that mitigates the exposure to certain attacks that exploit these limits in order to compromise user privacy. The second part of the thesis also shows how to use an anonymous credential system in order to facilitate what we call ‘privacy-aware single sign-on’ in an open environment. The scheme enables the user to authenticate himself to service providers under separate identifier, where these identifiers cannot be linked to each other, even if all service providers collude. It is demonstrated that the anonymity enhancement scheme proposed earlier is particularly suited in this special application of anonymous credential systems. Finally, the third part of the thesis concludes with some open research questions

    NEW SECURE SOLUTIONS FOR PRIVACY AND ACCESS CONTROL IN HEALTH INFORMATION EXCHANGE

    Get PDF
    In the current digital age, almost every healthcare organization (HCO) has moved from storing patient health records on paper to storing them electronically. Health Information Exchange (HIE) is the ability to share (or transfer) patients’ health information between different HCOs while maintaining national security standards like the Health Insurance Portability and Accountability Act (HIPAA) of 1996. Over the past few years, research has been conducted to develop privacy and access control frameworks for HIE systems. The goal of this dissertation is to address the privacy and access control concerns by building practical and efficient HIE frameworks to secure the sharing of patients’ health information. The first solution allows secure HIE among different healthcare providers while focusing primarily on the privacy of patients’ information. It allows patients to authorize a certain type of health information to be retrieved, which helps prevent any unintentional leakage of information. The privacy solution also provides healthcare providers with the capability of mutual authentication and patient authentication. It also ensures the integrity and auditability of health information being exchanged. The security and performance study for the first protocol shows that it is efficient for the purpose of HIE and offers a high level of security for such exchanges. The second framework presents a new cloud-based protocol for access control to facilitate HIE across different HCOs, employing a trapdoor hash-based proxy signature in a novel manner to enable secure (authenticated and authorized) on-demand access to patient records. The proposed proxy signature-based scheme provides an explicit mechanism for patients to authorize the sharing of specific medical information with specific HCOs, which helps prevent any undesired or unintentional leakage of health information. The scheme also ensures that such authorizations are authentic with respect to both the HCOs and the patient. Moreover, the use of proxy signatures simplifies security auditing and the ability to obtain support for investigations by providing non-repudiation. Formal definitions, security specifications, and a detailed theoretical analysis, including correctness, security, and performance of both frameworks are provided which demonstrate the improvements upon other existing HIE systems

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Token Based Authentication and Authorization with Zero-Knowledge Proofs for Enhancing Web API Security and Privacy

    Get PDF
    This design science study showcases an innovative artifact that utilizes Zero-Knowledge Proofs for API Authentication and Authorization. A comprehensive examination of existing literature and technology is conducted to evaluate the effectiveness of this alternative approach. The study reveals that existing APIs are using slower techniques that don’t scale, can’t take advantage of newer hardware, and have been unable to adequately address current security issues. In contrast, the novel technique presented in this study performs better, is more resilient in privacy sensitive and security settings, and is easy to implement and deploy. Additionally, this study identifies potential avenues for further research that could help advance the field of Web API development in terms of security, privacy, and simplicity
    corecore