488 research outputs found

    Self-adaptive trade-off decision making for autoscaling cloud-based services

    Get PDF
    Elasticity in the cloud is often achieved by on-demand autoscaling. In such context, the goal is to optimize the Quality of Service (QoS) and cost objectives for the cloud-based services. However, the difficulty lies in the facts that these objectives, e.g., throughput and cost, can be naturally conflicted; and the QoS of cloud-based services often interfere due to the shared infrastructure in cloud. Consequently, dynamic and effective trade-off decision making of autoscaling in the cloud is necessary, yet challenging. In particular, it is even harder to achieve well-compromised trade-offs, where the decision largely improves the majority of the objectives; while causing relatively small degradations to others. In this paper, we present a self-adaptive decision making approach for autoscaling in the cloud. It is capable to adaptively produce autoscaling decisions that lead to well-compromised trade-offs without heavy human intervention. We leverage on ant colony inspired multi-objective optimization for searching and optimizing the trade-offs decisions, the result is then filtered by compromise-dominance, a mechanism that extracts the decisions with balanced improvements in the trade-offs. We experimentally compare our approach to four state-of-the-arts autoscaling approaches: rule, heuristic, randomized and multi-objective genetic algorithm based solutions. The results reveal the effectiveness of our approach over the others, including better quality of trade-offs and significantly smaller violation of the requirements

    Self-adaptive trade-off decision making for autoscaling cloud-based services

    Get PDF
    Elasticity in the cloud is often achieved by on-demand autoscaling. In such context, the goal is to optimize the Quality of Service (QoS) and cost objectives for the cloud-based services. However, the difficulty lies in the facts that these objectives, e.g., throughput and cost, can be naturally conflicted; and the QoS of cloud-based services often interfere due to the shared infrastructure in cloud. Consequently, dynamic and effective trade-off decision making of autoscaling in the cloud is necessary, yet challenging. In particular, it is even harder to achieve well-compromised trade-offs, where the decision largely improves the majority of the objectives; while causing relatively small degradations to others. In this paper, we present a self-adaptive decision making approach for autoscaling in the cloud. It is capable to adaptively produce autoscaling decisions that lead to well-compromised trade-offs without heavy human intervention. We leverage on ant colony inspired multi-objective optimization for searching and optimizing the trade-offs decisions, the result is then filtered by compromise-dominance, a mechanism that extracts the decisions with balanced improvements in the trade-offs. We experimentally compare our approach to four state-of-the-arts autoscaling approaches: rule, heuristic, randomized and multi-objective genetic algorithm based solutions. The results reveal the effectiveness of our approach over the others, including better quality of trade-offs and significantly smaller violation of the requirements

    Self-adaptive and online QoS modeling for cloud-based software services

    Get PDF
    In the presence of scale, dynamism, uncertainty and elasticity, cloud software engineers faces several challenges when modeling Quality of Service (QoS) for cloud-based software services. These challenges can be best managed through self-adaptivity because engineers' intervention is difficult, if not impossible, given the dynamic and uncertain QoS sensitivity to the environment and control knobs in the cloud. This is especially true for the shared infrastructure of cloud, where unexpected interference can be caused by co-located software services running on the same virtual machine; and co-hosted virtual machines within the same physical machine. In this paper, we describe the related challenges and present a fully dynamic, self-adaptive and online QoS modeling approach, which grounds on sound information theory and machine learning algorithms, to create QoS model that is capable to predict the QoS value as output over time by using the information on environmental conditions, control knobs and interference as inputs. In particular, we report on in-depth analysis on the correlations of selected inputs to the accuracy of QoS model in cloud. To dynamically selects inputs to the models at runtime and tune accuracy, we design self-adaptive hybrid dual-learners that partition the possible inputs space into two sub-spaces, each of which applies different symmetric uncertainty based selection techniques; the results of sub-spaces are then combined. Subsequently, we propose the use of adaptive multi-learners for building the model. These learners simultaneously allow several learning algorithms to model the QoS function, permitting the capability for dynamically selecting the best model for prediction on the fly. We experimentally evaluate our models in the cloud environment using RUBiS benchmark and realistic FIFA 98 workload. The results show that our approach is more accurate and effective than state-of-the-art modelings

    Autonomous management of cost, performance, and resource uncertainty for migration of applications to infrastructure-as-a-service (IaaS) clouds

    Get PDF
    2014 Fall.Includes bibliographical references.Infrastructure-as-a-Service (IaaS) clouds abstract physical hardware to provide computing resources on demand as a software service. This abstraction leads to the simplistic view that computing resources are homogeneous and infinite scaling potential exists to easily resolve all performance challenges. Adoption of cloud computing, in practice however, presents many resource management challenges forcing practitioners to balance cost and performance tradeoffs to successfully migrate applications. These challenges can be broken down into three primary concerns that involve determining what, where, and when infrastructure should be provisioned. In this dissertation we address these challenges including: (1) performance variance from resource heterogeneity, virtualization overhead, and the plethora of vaguely defined resource types; (2) virtual machine (VM) placement, component composition, service isolation, provisioning variation, and resource contention for multitenancy; and (3) dynamic scaling and resource elasticity to alleviate performance bottlenecks. These resource management challenges are addressed through the development and evaluation of autonomous algorithms and methodologies that result in demonstrably better performance and lower monetary costs for application deployments to both public and private IaaS clouds. This dissertation makes three primary contributions to advance cloud infrastructure management for application hosting. First, it includes design of resource utilization models based on step-wise multiple linear regression and artificial neural networks that support prediction of better performing component compositions. The total number of possible compositions is governed by Bell's Number that results in a combinatorially explosive search space. Second, it includes algorithms to improve VM placements to mitigate resource heterogeneity and contention using a load-aware VM placement scheduler, and autonomous detection of under-performing VMs to spur replacement. Third, it describes a workload cost prediction methodology that harnesses regression models and heuristics to support determination of infrastructure alternatives that reduce hosting costs. Our methodology achieves infrastructure predictions with an average mean absolute error of only 0.3125 VMs for multiple workloads
    • …
    corecore