5 research outputs found

    From Bipedal to Quadrupedal Locomotion, Experimental Realization of Lyapunov Approaches

    Get PDF
    Possibly one of the most significant innovations of the past decade is the hybrid zero dynamics (HZD) framework, which formally and rigorously designs a control algorithm for robotic walking. In this methodology, Lyapunov stability, which is often used to certificate a dynamical system's stability, was introduced to the control law design for a hybrid control system. However, the prerequisites of precise modeling to apply the HZD methodology can often be too restrictive to design controllers for uncertain and complex real-world hardware experiments. This thesis addresses the problem raised by noisy measurements and the intricate hybrid structure of locomotion dynamics. First, the HZD methodology's construction is based on the full-order, hybrid dynamics of legged locomotion, which can be intractable for control synthesis for high-dimensional systems. This thesis studies the general structure of hybrid control systems for walking systems, ranging from 1D hopping, 2D walking, 2D running, and 3D quadrupedal locomotion on rough terrains. Further, we characterize a walking behavior--gait--as a solution (execution) to a hybrid control system. To find these solutions, which represent a "gait," we employed advanced numerical methods such as collocation methods to parse the solution-finding problem into the open- and closed-loop trajectory optimization problems. The result is that we can find versatile gaits for ten different robotic platforms efficiently. This includes bipedal running, bipedal walking on slippery surfaces, and quadrupedal robots walking on sloped terrains. The numerous solution-finding examples expand the applicability of the HZD framework towards more complex dynamical systems. Further, for the uncertain and noisy real-world implementation, the exponential stability of the continuous dynamics is an ideal but restrictive condition for hybrid stability. This condition is especially challenging to satisfy for highly dynamical behaviors such as bipedal running, which loses ground support for a short period. This thesis observes the destabilizing effect of the noisy measurements of the phasing variable. By reformulating the traditional input-to-state stability (ISS) concept into phase-uncertainty to state stability, we are able to synthesize a robust controller for bipedal running on DURUS-2D. This time+state-based controller formally guarantees stability under noisy measurements and stabilizes the 1.75 m/s running experiments. Lastly, robotic dynamics have long been characterized as the interconnection of rigid-body dynamics. We take this perspective one step further and incorporate controller design into the formulation of coupled control systems (CCS). We first view a quadrupedal robot as two bipedal robots connected via some holonomic constraints. In a dimensional reduction manner, we develop a novel optimization framework, and the computational performance is reduced to a few seconds for gait generation. Furthermore, we can design local controllers for each bipedal subsystem and still guarantee the overall system's stability. This is done by combining the HZD framework and the ISS properties to contain the disturbance induced by the other subsystems' inputs. Utilizing the proposed CCS methods, we will experimentally realize quadrupedal walking on various outdoor rough terrains.</p

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Modeling, analysis and control of robot-object nonsmooth underactuated Lagrangian systems: A tutorial overview and perspectives

    Get PDF
    International audienceSo-called robot-object Lagrangian systems consist of a class of nonsmooth underactuated complementarity Lagrangian systems, with a specific structure: an "object" and a "robot". Only the robot is actuated. The object dynamics can thus be controlled only through the action of the contact Lagrange multipliers, which represent the interaction forces between the robot and the object. Juggling, walking, running, hopping machines, robotic systems that manipulate objects, tapping, pushing systems, kinematic chains with joint clearance, crawling, climbing robots, some cable-driven manipulators, and some circuits with set-valued nonsmooth components, belong this class. This article aims at presenting their main features, then many application examples which belong to the robot-object class, then reviewing the main tools and control strategies which have been proposed in the Automatic Control and in the Robotics literature. Some comments and open issues conclude the article

    Dynamic Bipedal Locomotion: From Hybrid Zero Dynamics to Control Lyapunov Functions via Experimentally Realizable Methods

    Get PDF
    Robotic bipedal locomotion has become a rapidly growing field of research as humans increasingly look to augment their natural environments with intelligent machines. In order for these robotic systems to navigate the often unstructured environments of the world and perform tasks, they must first have the capability to dynamically, reliably, and efficiently locomote. Due to the inherently hybrid and underactuated nature of dynamic bipedal walking, the greatest experimental successes in the field have often been achieved by considering all aspects of the problem; with explicit consideration of the interplay between modeling, trajectory planning, and feedback control. The methodology and developments presented in this thesis begin with the modeling and design of dynamic walking gaits on bipedal robots through hybrid zero dynamics (HZD), a mathematical framework that utilizes hybrid system models coupled with nonlinear controllers that results in stable locomotion. This will form the first half of the thesis, and will be used to develop a solid foundation of HZD trajectory optimization tools and algorithms for efficient synthesis of accurate hybrid motion plans for locomotion on two underactuated and compliant 3D bipeds. While HZD and the associated trajectory optimization are an existing framework, the resulting behaviors shown in these preliminary experiments will extend the limits of what HZD has demonstrated is possible thus far in the literature. Specifically, the core results of this thesis demonstrate the first experimental multi-contact humanoid walking with HZD on the DURUS robot and then through the first compliant HZD motion library for walking over a continuum of walking speeds on the Cassie robot. On the theoretical front, a novel formulation of an optimization-based control framework is introduced that couples convergence constraints from control Lyapunov functions (CLF)s with desirable formulations existing in other areas of the bipedal locomotion field that have proven successful in practice, such as inverse dynamics control and quadratic programming approaches. The theoretical analysis and experimental validation of this controller thus forms the second half of this thesis. First, a theoretical analysis is developed which demonstrates several useful properties of the approach for tuning and implementation, and the stability of the controller for HZD locomotion is proven. This is then extended to a relaxed version of the CLF controller, which removes a convergence inequality constraint in lieu of a conservative CLF cost within a quadratic program to achieve tracking. It is then explored how this new CLF formulation can fully leverage the planned HZD walking gaits to achieve the target performance on physical hardware. Towards this goal, an experimental implementation of the CLF controller is derived for the Cassie robot, with the resulting experiments demonstrating the first successful realization of a CLF controller for a 3D biped on hardware in the literature. The accuracy of the robot model and synthesized HZD motion library allow the real-time control implementation to regularize the CLF optimization cost about the nominal walking gait. This drives the controller to choose smooth input torques and anticipated spring torques, as well as regulate an optimal distribution of feasible ground reaction forces on hardware while reliably tracking the planned virtual constraints. These final results demonstrate how each component of this thesis were brought together to form an effective end-to-end implementation of a nonlinear control framework for underactuated locomotion on a bipedal robot through modeling, trajectory optimization, and then ultimately real-time control.</p

    Using Model-based Optimal Control for Conceptional Motion Generation for the Humannoid Robot HRP-2 14 and Design Investigations for Exo-Skeletons

    Get PDF
    The research field of bipedal locomotion has been active since a few decades now. At one hand, the legged locomotion principle comprises highly flexible and robust mobility for technical applications. At the other hand, a thorough technical understanding of bipedalism supports efforts of clinicians and engineers to help people, suffering from reduced locomotion capabilities caused by fatal incidents. Since the technology enabled the construction of numerous robotic devices, among them: various humanoids, researchers started to investigate bipedalism by abstraction and adoption for technical applications. Findings from humanoid robotics are further exploited for the construction of devices for human performance augmentation and mobility support or gait rehabilitation, among them: orthosis and exo-skeletons. Although this research continuously progresses, the motion capacities of humanoid robots still lack far behind those of humans in terms of forward velocity, robustness and appearance of the overall motion. Generally, it is claimed that the difference of performance between humans and robotics is not only due to the limiting characteristics of the employed technology, e.g. constructive lack of specific determinants of gait for bipedalism or dynamic limits of the actuation system, but as well to the adopted methods for motion generation and control. For humanoid robotics, methods for motion generation are classified into optimization-based methods and those that employ heuristics, that are mostly distinguished based on the problem complexity (computation time) and the resulting dynamic error between the generated motion and the dynamics of the real robot. The implementation of the dynamic motion on the robotic platform is usually comprised with an on-line stabilizing control system. This control system must then identify and resolve instantaneously the dynamic error to maintain a continuously stable operation of the device. A large dynamic error and breach of the dynamic limits of the actuation system can quickly lead to a fatal destabilization of the device. This work proposes a contribution to the model computation and the strategy of the problem formulation of direct multiple-shooting based optimal control (Bock et. al.) for dynamically stable optimization-based motion generation. The computation of the whole-body dynamic model inside the optimization relies either on forward or inverse dynamics approach. As the inverse dynamics approach has frequently been perceived as less resource intensive than the forward dynamics approach, a new generic algorithm for insufficiently constrained, under-actuated dynamic systems has been developed and thoroughly tested to comply with all numerical restrictions of the enveloping optimization algorithm. Based on this contribution, various optimal control problems for the humanoid platform HRP-2 14 have been formulated to assess the influence of different biologically inspired optimization criteria on the final motion characteristics of walking motions. From thorough bibliographic researches a dynamically more accurate model was comprised, by taking into account the impact absorbing element in the ankle joint complex. Based on the experiences of the previous study, a problem formulation for the limiting case of, dynamically overstepping an obstacle of 20cm x 11cm (height x width) with only two steps, while maintaining its stable operation was accomplished. This is a new record for this platform. In a further part, this work proposes an iterative comprehensive model-based optimal control approach for the conception of a lower limb exo-skeleton that respects the integrated nature of such a mechatronic device. In this contribution, a human effectively wearing such a lower limb exo-skeleton is modeled. The approach then substantiates all system components in an iterative procedure, based on the complete system model, effectively resolving all complex inter-dependencies between the different components of the system. The study in this work is conducted on an important benchmark motion, walking, of a healthy human being. From this study the limiting characteristics of the system are determined and substantial propositions to the realization of various system components are formulated
    corecore