8,777 research outputs found

    Flood Prediction and Mitigation in Data-Sparse Environments

    Get PDF
    In the last three decades many sophisticated tools have been developed that can accurately predict the dynamics of flooding. However, due to the paucity of adequate infrastructure, this technological advancement did not benefit ungauged flood-prone regions in the developing countries in a major way. The overall research theme of this dissertation is to explore the improvement in methodology that is essential for utilising recently developed flood prediction and management tools in the developing world, where ideal model inputs and validation datasets do not exist. This research addresses important issues related to undertaking inundation modelling at different scales, particularly in data-sparse environments. The results indicate that in order to predict dynamics of high magnitude stream flow in data-sparse regions, special attention is required on the choice of the model in relation to the available data and hydraulic characteristics of the event. Adaptations are necessary to create inputs for the models that have been primarily designed for areas with better availability of data. Freely available geospatial information of moderate resolution can often meet the minimum data requirements of hydrological and hydrodynamic models if they are supplemented carefully with limited surveyed/measured information. This thesis also explores the issue of flood mitigation through rainfall-runoff modelling. The purpose of this investigation is to assess the impact of land-use changes at the sub-catchment scale on the overall downstream flood risk. A key component of this study is also quantifying predictive uncertainty in hydrodynamic models based on the Generalised Likelihood Uncertainty Estimation (GLUE) framework. Detailed uncertainty assessment of the model outputs indicates that, in spite of using sparse inputs, the model outputs perform at reasonably low levels of uncertainty both spatially and temporally. These findings have the potential to encourage the flood managers and hydrologists in the developing world to use similar data sets for flood management

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    3D-Stereoscopic Immersive Analytics Projects at Monash University and University of Konstanz

    Get PDF
    Immersive Analytics investigates how novel interaction and display technologies may support analytical reasoning and decision making. The Immersive Analytics initiative of Monash University started early 2014. Over the last few years, a number of projects have been developed or extended in this context to meet the requirements of semi- or full-immersive stereoscopic environments. Different technologies are used for this purpose: CAVE2™ (a 330 degree large-scale visualization environment which can be used for educative and scientific group presentations, analyses and discussions), stereoscopic Powerwalls (miniCAVEs, representing a segment of the CAVE2 and used for development and communication), Fishtanks, and/or HMDs (such as Oculus, VIVE, and mobile HMD approaches). Apart from CAVE2™ all systems are or will be employed on both the Monash University and the University of Konstanz side, especially to investigate collaborative Immersive Analytics. In addition, sensiLab extends most of the previous approaches by involving all senses, 3D visualization is combined with multi-sensory feedback, 3D printing, robotics in a scientific-artistic-creative environment

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Flood Forecasting Using Machine Learning Methods

    Get PDF
    This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Wate

    Computational Fluid Dynamics Analysis of Non-Cohesive Sediment Transport in Open Channel Flow

    Get PDF
    Predicting sediment transport has numerous implications in Civil Engineering and related fields. When there is excess sediment deposit in waterways, ships that move people and goods cannot navigate them. Loss of sediment that surrounds hydraulic support structures (e.g., bridge piers) may cause structural hazards. In the present dissertation research, computational fluid dynamics (CFD) was applied to improve the prediction capability of sediment transport in turbulent environments, with a focus on open channel flows. The CFD tool used is FANS3D (Finite Analytic Navier-Stokes code for 3D flow), which solves the Reynolds-Averaged form of Navier-Stokes equations in general curvilinear coordinate systems. The code was coupled with sediment transport models to solve the hydrodynamics and the resulting transport phenomena. For flows in domains with complex geometries, the overset grid technique was adopted, wherein multiple blocks with different shapes and structures form the mesh. The wall function approach was implemented to account for roughness effects of the physical domain’s boundary surfaces. After validation with experimental results, the coupled model was utilized in four practical applications: transport of suspended sediment in a channel bend, scour around abutment, backfilling of scour hole under a unidirectional flow, and scour around an offshore wind turbine support structure

    Continuous reservoir model updating by ensemble Kalman filter on Grid computing architectures

    Get PDF
    A reservoir engineering Grid computing toolkit, ResGrid and its extensions, were developed and applied to designed reservoir simulation studies and continuous reservoir model updating. The toolkit provides reservoir engineers with high performance computing capacity to complete their projects without requiring them to delve into Grid resource heterogeneity, security certification, or network protocols. Continuous and real-time reservoir model updating is an important component of closed-loop model-based reservoir management. The method must rapidly and continuously update reservoir models by assimilating production data, so that the performance predictions and the associated uncertainty are up-to-date for optimization. The ensemble Kalman filter (EnKF), a Bayesian approach for model updating, uses Monte Carlo statistics for fusing observation data with forecasts from simulations to estimate a range of plausible models. The ensemble of updated models can be used for uncertainty forecasting or optimization. Grid environments aggregate geographically distributed, heterogeneous resources. Their virtual architecture can handle many large parallel simulation runs, and is thus well suited to solving model-based reservoir management problems. In the study, the ResGrid workflow for Grid-based designed reservoir simulation and an adapted workflow provide tools for building prior model ensembles, task farming and execution, extracting simulator output results, implementing the EnKF, and using a web portal for invoking those scripts. The ResGrid workflow is demonstrated for a geostatistical study of 3-D displacements in heterogeneous reservoirs. A suite of 1920 simulations assesses the effects of geostatistical methods and model parameters. Multiple runs are simultaneously executed using parallel Grid computing. Flow response analyses indicate that efficient, widely-used sequential geostatistical simulation methods may overestimate flow response variability when compared to more rigorous but computationally costly direct methods. Although the EnKF has attracted great interest in reservoir engineering, some aspects of the EnKF remain poorly understood, and are explored in the dissertation. First, guidelines are offered to select data assimilation intervals. Second, an adaptive covariance inflation method is shown to be effective to stabilize the EnKF. Third, we show that simple truncation can correct negative effects of nonlinearity and non-Gaussianity as effectively as more complex and expensive reparameterization methods
    • …
    corecore