157 research outputs found

    Evaluation of resource distribution and discovery in the QuA middleware with focus on the peer-to-peer broker

    Get PDF
    QuA is a reflective middleware architecture with a implementation broker assisting the service planner in service planning by performing resource discovery. QuA supports pluggable core services and one of these services is the peer-to-peer broker. The peer-to-peer broker is a distributed approach to the normal server/client way of managing resource discovery. The resources are distributed among the participants in the peer-to-peer network making the network more resilient to resource loss than the normal client/server approach. This thesis evaluates the peer-to-peer broker by looking at the distribution of resources and the disk space and bandwidth used by this. By making the searchable domain for each resource larger by using more disk space we see if the resource discovery time can be improved and how big the disk and bandwidth overhead is by doing this. The evaluation of the peer-to-peer broker shows that by partitioning the searchable domain we do get some improvements in the resource discovery time, but at the expense of a large disk space usage and bandwidth overhead. Also the size of the searchable domain for a resource can become very large

    Testing a Cloud Provider Network for Hybrid P2P and Cloud Streaming Architectures

    Get PDF
    The number of online real-time streaming services deployed over network topologies like P2P or centralized ones has remarkably increased in the recent years. This has revealed the lack of networks that are well prepared to respond to this kind of traffic. A hybrid distribution network can be an efficient solution for real-time streaming services. This paper contains the experimental results of streaming distribution in a hybrid architecture that consist of mixed connections among P2P and Cloud nodes that can interoperate together. We have chosen to represent the P2P nodes as Planet Lab machines over the world and the cloud nodes using a Cloud provider's network. First we present an experimental validation of the Cloud infrastructure's ability to distribute streaming sessions with respect to some key streaming QoS parameters: jitter, throughput and packet losses. Next we show the results obtained from different test scenarios, when a hybrid distribution network is used. The scenarios measure the improvement of the multimedia QoS parameters, when nodes in the streaming distribution network (located in different continents) are gradually moved into the Cloud provider infrastructure. The overall conclusion is that the QoS of a streaming service can be efficiently improved, unlike in traditional P2P systems and CDN, by deploying a hybrid streaming architecture. This enhancement can be obtained by strategic placing of certain distribution network nodes into the Cloud provider infrastructure, taking advantage of the reduced packet loss and low latency that exists among its datacenters

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    A framework for the dynamic management of Peer-to-Peer overlays

    Get PDF
    Peer-to-Peer (P2P) applications have been associated with inefficient operation, interference with other network services and large operational costs for network providers. This thesis presents a framework which can help ISPs address these issues by means of intelligent management of peer behaviour. The proposed approach involves limited control of P2P overlays without interfering with the fundamental characteristics of peer autonomy and decentralised operation. At the core of the management framework lays the Active Virtual Peer (AVP). Essentially intelligent peers operated by the network providers, the AVPs interact with the overlay from within, minimising redundant or inefficient traffic, enhancing overlay stability and facilitating the efficient and balanced use of available peer and network resources. They offer an “insider‟s” view of the overlay and permit the management of P2P functions in a compatible and non-intrusive manner. AVPs can support multiple P2P protocols and coordinate to perform functions collectively. To account for the multi-faceted nature of P2P applications and allow the incorporation of modern techniques and protocols as they appear, the framework is based on a modular architecture. Core modules for overlay control and transit traffic minimisation are presented. Towards the latter, a number of suitable P2P content caching strategies are proposed. Using a purpose-built P2P network simulator and small-scale experiments, it is demonstrated that the introduction of AVPs inside the network can significantly reduce inter-AS traffic, minimise costly multi-hop flows, increase overlay stability and load-balancing and offer improved peer transfer performance

    Mobility: a double-edged sword for HSPA networks

    Get PDF
    This paper presents an empirical study on the performance of mobile High Speed Packet Access (HSPA, a 3.5G cellular standard) networks in Hong Kong via extensive field tests. Our study, from the viewpoint of end users, covers virtually all possible mobile scenarios in urban areas, including subways, trains, off-shore ferries and city buses. We have confirmed that mobility has largely negative impacts on the performance of HSPA networks, as fast-changing wireless environment causes serious service deterioration or even interruption. Meanwhile our field experiment results have shown unexpected new findings and thereby exposed new features of the mobile HSPA networks, which contradict commonly held views. We surprisingly find out that mobility can improve fairness of bandwidth sharing among users and traffic flows. Also the triggering and final results of handoffs in mobile HSPA networks are unpredictable and often inappropriate, thus calling for fast reacting fallover mechanisms. We have conducted in-depth research to furnish detailed analysis and explanations to what we have observed. We conclude that mobility is a double-edged sword for HSPA networks. To the best of our knowledge, this is the first public report on a large scale empirical study on the performance of commercial mobile HSPA networks

    Techniques of data prefetching, replication, and consistency in the Internet

    Get PDF
    Internet has become a major infrastructure for information sharing in our daily life, and indispensable to critical and large applications in industry, government, business, and education. Internet bandwidth (or the network speed to transfer data) has been dramatically increased, however, the latency time (or the delay to physically access data) has been reduced in a much slower pace. The rich bandwidth and lagging latency can be effectively coped with in Internet systems by three data management techniques: caching, replication, and prefetching. The focus of this dissertation is to address the latency problem in Internet by utilizing the rich bandwidth and large storage capacity for efficiently prefetching data to significantly improve the Web content caching performance, by proposing and implementing scalable data consistency maintenance methods to handle Internet Web address caching in distributed name systems (DNS), and to handle massive data replications in peer-to-peer systems. While the DNS service is critical in Internet, peer-to-peer data sharing is being accepted as an important activity in Internet.;We have made three contributions in developing prefetching techniques. First, we have proposed an efficient data structure for maintaining Web access information, called popularity-based Prediction by Partial Matching (PB-PPM), where data are placed and replaced guided by popularity information of Web accesses, thus only important and useful information is stored. PB-PPM greatly reduces the required storage space, and improves the prediction accuracy. Second, a major weakness in existing Web servers is that prefetching activities are scheduled independently of dynamically changing server workloads. Without a proper control and coordination between the two kinds of activities, prefetching can negatively affect the Web services and degrade the Web access performance. to address this problem, we have developed a queuing model to characterize the interactions. Guided by the model, we have designed a coordination scheme that dynamically adjusts the prefetching aggressiveness in Web Servers. This scheme not only prevents the Web servers from being overloaded, but it can also minimize the average server response time. Finally, we have proposed a scheme that effectively coordinates the sharing of access information for both proxy and Web servers. With the support of this scheme, the accuracy of prefetching decisions is significantly improved.;Regarding data consistency support for Internet caching and data replications, we have conducted three significant studies. First, we have developed a consistency support technique to maintain the data consistency among the replicas in structured P2P networks. Based on Pastry, an existing and popular P2P system, we have implemented this scheme, and show that it can effectively maintain consistency while prevent hot-spot and node-failure problems. Second, we have designed and implemented a DNS cache update protocol, called DNScup, to provide strong consistency for domain/IP mappings. Finally, we have developed a dynamic lease scheme to timely update the replicas in Internet

    Distributed Information Systems and Data Mining in Self-Organizing Networks

    Get PDF
    The diffusion of sensors and devices to generate and collect data is capillary. The infrastructure that envelops the smart city has to react to the contingent situations and to changes in the operating environment. At the same time, the complexity of a distributed system, consisting of huge amounts of components fixed and mobile, can generate unsustainable costs and latencies to ensure robustness, scalability, and reliability, with type architectures middleware. The distributed system must be able to self-organize and self-restore adapting its operating strategies to optimize the use of resources and overall efficiency. Peer-to-peer systems (P2P) can offer solutions to face the requirements of managing, indexing, searching and analyzing data in scalable and self-organizing fashions, such as in cloud services and big data applications, just to mention two of the most strategic technologies for the next years. In this thesis we present G-Grid, a multi-dimensional distributed data indexing able to efficiently execute arbitrary multi-attribute exact and range queries in decentralized P2P environments. G-Grid is a foundational structure and can be effectively used in a wide range of application environments, including grid computing, cloud and big data domains. Nevertheless we proposed some improvements on the basic structure introducing a bit of randomness by using Small World networks, whereas are structures derived from social networks and show an almost uniform traffic distribution. This produced huge advantages in efficiency, cutting maintenance costs, without losing efficacy. Experiments show how this new hybrid structure obtains the best performance in traffic distribution and it a good settlement for the overall performance on the requirements desired in the modern data systems

    Markovian Model for Data-Driven P2P Video Streaming Applications

    Get PDF
    The purpose of this study is to propose a Markovian model to evaluate general P2P streaming applications with the assumption of chunk-delivery approach similar to Bit-Torrent file sharing applications. The state of the system was defined as the number of useful pieces in a peer's buffer. The model was numerically solved to find out the probability distribution of the number of useful pieces. The central theme of this study revolved around answering the question: what is the probability that a peer can play the stream continuously? This is one of the most important metrics to evaluate the performance of a streaming application. By finding the numerical solution of the Markov chain, we found that increasing the number of neighbours enhances the continuity to a certain threshold, after which the continuity improvement is marginal which complies with empirical results conducted with DONet, a data-driven overlay network for media streaming. We also found that increasing the buffer length increases the continuity but there is a trade-off because peers exchange information about the buffer map, hence increasing the buffer length increases the overhead. We discussed the continuity for both homogeneous and heterogeneous peers regarding the uploading bandwidth. Then we discussed the case when the first chunk is downloaded, but not played out because the playtime deadline was missed. We suggested a general approach for freezing and skipping the playback pointer, that can be used to take advantage of the available delay tolerance, finally given a specific configuration we measured the probability of sliding action, that could be used to initiate peers' adaptation process

    Keyword-based search in peer-to-peer networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    • 

    corecore