12 research outputs found

    SCVT : IEEE symposium on communications and vehicular technology in the Benelux : proceedings, 3rd, Eindhoven, October 25-26 1995

    Get PDF

    Sparse graph codes on a multi-dimensional WCDMA platform

    Get PDF
    Digital technology has made complex signal processing possible in communication systems and greatly improved the performance and quality of most modern telecommunication systems. The telecommunication industry and specifically mobile wireless telephone and computer networks have shown phenomenal growth in both the number of subscribers and emerging services, resulting in rapid consumption of common resources of which the electromagnetic spectrum is the most important. Technological advances and research in digital communication are necessary to satisfy the growing demand, to fuel the demand and to exploit all the possibilities and business opportunities. Efficient management and distribution of resources facilitated by state-of-the-art algorithms are indispensable in modern communication networks. The challenge in communication system design is to construct a system that can accurately reproduce the transmitted source message at the receiver. The channel connecting the transmitter and receiver introduces detrimental effects and limits the reliability and speed of information transfer between the source and destination. Typical channel effects encountered in mobile wireless communication systems include path loss between the transmitter and receiver, noise caused by the environment and electronics in the system, and fading caused by multiple paths and movement in the communication channel. In multiple access systems, different users cause interference in each other’s signals and adversely affect the system performance. To ensure reliable communication, methods to overcome channel effects must be devised and implemented in the system. Techniques used to improve system performance and capacity include temporal, frequency, polarisation and spatial diversity. This dissertation is concerned mainly with temporal or time diversity. Channel coding is a temporal diversity scheme and aims to improve the system error performance by adding structured redundancy to the transmitted message. The receiver exploits the redundancy to infer with greater accuracy which message was transmitted, compared with uncoded systems. Sparse graph codes are channel codes represented as sparse probabilistic graphical models which originated in artificial intelligence theory. These channel codes are described as factor graph structures with bit nodes, representing the transmitted codeword bits, and bit-constrained or check nodes. Each constraint involves only a small number of code bits, resulting in a sparse factor graph with far fewer connections between bit and check nodes than the maximum number of possible connections. Sparse graph codes are iteratively decoded using message passing or belief propagation algorithms. Three classes of iteratively decodable channel codes are considered in this study, including low-density parity-check (LDPC), Turbo and repeat-accumulate (RA) codes. The modulation platform presented in this dissertation is a spectrally efficient wideband system employing orthogonal complex spreading sequences (CSSs) to spread information sequences over a wider frequency band in multiple modulation dimensions. Special features of these spreading sequences include their constant envelopes and power output, providing communication range or device battery life advantages. This study shows that multiple layer modulation (MLM) can be used to transmit parallel data streams with improved spectral efficiency compared with single-layer modulation, providing data throughput rates proportional to the number of modulation layers at performances equivalent to single-layer modulation. Alternatively, multiple modulation layers can be used to transmit coded information to achieve improved error performance at throughput rates equivalent to a single layer systemDissertation (MEng (Electronic Engineering))--University of Pretoria, 2007.Electrical, Electronic and Computer Engineeringunrestricte

    Opportunistic traffic Offloadings Mechanisms for Mobile/4G Networks

    Get PDF
    In the last few years, it has been observed a drastic surge of data traffic demand from mobile personal devices (smartphones and tablets) over cellular networks [1]. Even though a significant improvement in cellular bandwidth provisioning is expected with LTE-Advanced systems, the overall situation is not expected to change significantly. In fact, the diffusion of M2M and IoT devices is expected to increase at an exponential pace (the share of M2M devices is predicted to increase 5x by 2018 [1]) while the capacity of the cellular network is expected to increase linearly [1]. In order to meet such a high demand and to increase the capacity of the channel, multiple offloading techniques are currently under investigation, from modifications inside the cellular network architecture, to integration of multiple wireless broadband infrastructures, to exploiting direct communications between mobile devices. All these approaches can be diveded in two main classes: - To develop more sophisticated physical layer technologies (e.g. massive MIMO, higher-order modulation schemes, cooperative multi-period transmission/reception) - To offload part of the traffic from the cellular to another complementary network. From this perspective the thesis contributes on both areas. On the one hand we discuss our investigations about the performance of the LTE channel capacity through the development of a unified modelling framework of the MAC-level downlink throughput of a sigle LTE cell, which caters for wideband CQI feedback schemes, AMC and HARQ protocols as defined in the LTE standard. Furthemore we also propose a solution, based on reinforcement learning, to improve the LTE Adaptive Modulation and coding Scheme (MCS). On the other hand we have proposed and validated offloading mechanisms which are minimally invasive for users' mobile devices, as they use only minimally their resources. Furthemore, as opposed to most of the literature, we consider the case where requests for content are non-synchronised, i.e. users request content at random points in time

    Signal design and Theoretical bounds for Time-Of-Arrival estimation in GNSS applications

    Get PDF
    Positioning accuracy in satellite navigation systems depends on time-delay estimation (TDE) between satellite transmitted codes and local receiver replicas. This thesis is specifically focused on the problem of improving time delay estimation (TDE) accuracy of SS signals, focusing on the fundamental issue of estimation theory and on the properties of the transmitted signal. TDE fundamentals limits are deeply investigated, encompassing the Cram´er Rao Bound and the Ziv-Zakai Bound, and their modified versions to lighten their computation in presence of unknown parameters, in addiction to the time delay. The adoption of the ZZB as benchmark for both acquisition and tracking stage performance is addressed, analyzing innovative or standard signalling waveforms such as Galileo SIS. The main contributions of this thesis are dealt with the analysis of applicability of spread spectrum continuous phase-modulated (SS-CPM) and spread spectrum filtered multitone (SS-FMT) as ranging signals. A special subset of CPM, labeled as “Semi-integer MSK (SiMSK)” obtained by properly setting the modulation parameters, is revealed easily adaptable to the requirements on emissions, intrinsically constant envelope and spectral efficient, while still allowing good tracking performance. Besides, an ad hoc encoding of the SS-SiMSK enables the design of a constant envelope signal bearing two different rate services, without any approximation at the transmitter side. The analysis of the multicarrier (MC) signal revealed the high degree of freedom in its design, proposing the special Filtered Multitone (FMT) modulation as possible candidate for ranging signals. The strictly bandlimited property and the full spectral flexibility possessed by the FMT are exploited in some cases of study to adapt the system to channel conditions or in particular to emulate existing or innovative spectra. For both the SSCPM and SS-FMT modulation schemes investigated, some estimation algorithms are tested and their performance are compared to the correspondent theoretical bound
    corecore