24 research outputs found

    SCS: 60 years and counting! A time to reflect on the Society's scholarly contribution to M&S from the turn of the millennium.

    Get PDF
    The Society for Modeling and Simulation International (SCS) is celebrating its 60th anniversary this year. Since its inception, the Society has widely disseminated the advancements in the field of modeling and simulation (M&S) through its peer-reviewed journals. In this paper we profile research that has been published in the journal SIMULATION: Transactions of the Society for Modeling and Simulation International from the turn of the millennium to 2010; the objective is to acknowledge the contribution of the authors and their seminal research papers, their respective universities/departments and the geographical diversity of the authors' affiliations. Yet another objective is to contribute towards the understanding of the overall evolution of the discipline of M&S; this is achieved through the classification of M&S techniques and its frequency of use, analysis of the sectors that have seen the predomination application of M&S and the context of its application. It is expected that this paper will lead to further appreciation of the contribution of the Society in influencing the growth of M&S as a discipline and, indeed, in steering its future direction

    Programming Models\u27 Support for Heterogeneous Architecture

    Get PDF
    Accelerator-enhanced computing platforms have drawn a lot of attention due to their massive peak computational capacity. Heterogeneous systems equipped with accelerators such as GPUs have become the most prominent components of High Performance Computing (HPC) systems. Even at the node level the significant heterogeneity of CPU and GPU, i.e. hardware and memory space differences, leads to challenges for fully exploiting such complex architectures. Extending outside the node scope, only escalate such challenges. Conventional programming models such as data- ow and message passing have been widely adopted in HPC communities. When moving towards heterogeneous systems, the lack of GPU integration causes such programming models to struggle in handling the heterogeneity of different computing units, leading to sub-optimal performance and drastic decrease in developer productivity. To bridge the gap between underlying heterogeneous architectures and current programming paradigms, we propose to extend such programming paradigms with architecture awareness optimization. Two programming models are used to demonstrate the impact of heterogeneous architecture awareness. The PaRSEC task-based runtime, an adopter of the data- ow model, provides opportunities for overlapping communications with computations and minimizing data movements, as well as dynamically adapting the work granularity to the capability of the hardware. To fulfill the demand of an efficient and portable Message Passing Interface (MPI) implementation to communicate GPU data, a GPU-aware design is presented based on the Open MPI infrastructure supporting efficient point-to-point and collective communications of GPU-residential data, for both contiguous and non-contiguous memory layouts, by leveraging GPU network topology and hardware capabilities such as GPUDirect. The tight integration of GPU support in a widely used programming environment, free the developers from manually move data into/out of host memory before/after relying on MPI routines for communications, allowing them to focus instead on algorithmic optimizations. Experimental results have confirmed that supported by such a tight and transparent integration, conventional programming models can once again take advantage of the state-of-the-art hardware and exhibit performance at the levels expected by the underlying hardware capabilities

    The Simulation Model Partitioning Problem: an Adaptive Solution Based on Self-Clustering (Extended Version)

    Full text link
    This paper is about partitioning in parallel and distributed simulation. That means decomposing the simulation model into a numberof components and to properly allocate them on the execution units. An adaptive solution based on self-clustering, that considers both communication reduction and computational load-balancing, is proposed. The implementation of the proposed mechanism is tested using a simulation model that is challenging both in terms of structure and dynamicity. Various configurations of the simulation model and the execution environment have been considered. The obtained performance results are analyzed using a reference cost model. The results demonstrate that the proposed approach is promising and that it can reduce the simulation execution time in both parallel and distributed architectures

    Reduction of co-simulation runtime through parallel processing

    Get PDF
    During the design phase of modern digital and mixed signal devices, simulations are run to determine the fitness of the proposed design. Some of these simulations can take large amounts of time, thus slowing down the time to manufacture of the system prototype. One of the typical simulations that is done is an integration simulation that simulates the hardware and software at the same time. Most simulators used in this task are monolithic simulators. Some simulators do have the ability to have external libraries and simulators interface with it, but the setup can be a tedious task. This thesis proposes, implements and evaluates a distributed simulator called PDQScS, that allows for speed up of the simulation to reduce this bottleneck in the design cycle without the tedious separation and linking by the user. Using multiple processes and SMP machines a simulation run time reduction was found

    Simulator adaptation at runtime for component-based simulation software

    Get PDF
    Component-based simulation software can provide many opportunities to compose and configure simulators, resulting in an algorithm selection problem for the user of this software. This thesis aims to automate the selection and adaptation of simulators at runtime in an application-independent manner. Further, it explores the potential of tailored and approximate simulators - in this thesis concretely developed for the modeling language ML-Rules - supporting the effectiveness of the adaptation scheme.Komponenten-basierte Simulationssoftware kann viele Möglichkeiten zur Komposition und Konfiguration von Simulatoren bieten und damit zu einem Konfigurationsproblem für Nutzer dieser Software führen. Das Ziel dieser Arbeit ist die Entwicklung einer generischen und automatisierten Auswahl- und Adaptionsmethode für Simulatoren. Darüber hinaus wird das Potential von spezifischen und approximativen Simulatoren anhand der Modellierungssprache ML-Rules untersucht, welche die Effektivität des entwickelten Adaptionsmechanismus erhöhen können
    corecore