988 research outputs found

    Abstract Interactions and Interaction Refinement in Model-Driven Design

    Get PDF
    In a model-driven design process the interaction between application parts can be described at various levels of platform-independence. At the lowest level of platform-independence, interaction is realized by interaction mechanisms provided by specific middleware platforms. At higher levels of platform-independence, interaction must be described in such a way that it can be further refined and realized onto a number of different middleware platforms, each with its particular interaction mechanisms and implementation constraints. In this paper, we investigate concepts that support interaction design at various levels of middleware-platform-independence. Also, we propose design operations for interaction refinement. The application of these operations to source designs results in target designs that take into account implementation constraints imposed by platforms, while preserving characteristics prescribed in source designs

    Adaptive object management for distributed systems

    Get PDF
    This thesis describes an architecture supporting the management of pluggable software components and evaluates it against the requirement for an enterprise integration platform for the manufacturing and petrochemical industries. In a distributed environment, we need mechanisms to manage objects and their interactions. At the least, we must be able to create objects in different processes on different nodes; we must be able to link them together so that they can pass messages to each other across the network; and we must deliver their messages in a timely and reliable manner. Object based environments which support these services already exist, for example ANSAware(ANSA, 1989), DEC's Objectbroker(ACA,1992), Iona's Orbix(Orbix,1994)Yet such environments provide limited support for composing applications from pluggable components. Pluggability is the ability to install and configure a component into an environment dynamically when the component is used, without specifying static dependencies between components when they are produced. Pluggability is supported to a degree by dynamic binding. Components may be programmed to import references to other components and to explore their interfaces at runtime, without using static type dependencies. Yet thus overloads the component with the responsibility to explore bindings. What is still generally missing is an efficient general-purpose binding model for managing bindings between independently produced components. In addition, existing environments provide no clear strategy for dealing with fine grained objects. The overhead of runtime binding and remote messaging will severely reduce performance where there are a lot of objects with complex patterns of interaction. We need an adaptive approach to managing configurations of pluggable components according to the needs and constraints of the environment. Management is made difficult by embedding bindings in component implementations and by relying on strong typing as the only means of verifying and validating bindings. To solve these problems we have built a set of configuration tools on top of an existing distributed support environment. Specification tools facilitate the construction of independent pluggable components. Visual composition tools facilitate the configuration of components into applications and the verification of composite behaviours. A configuration model is constructed which maintains the environmental state. Adaptive management is made possible by changing the management policy according to this state. Such policy changes affect the location of objects, their bindings, and the choice of messaging system

    Models of higher-order, type-safe, distributed computation over autonomous persistent object stores

    Get PDF
    A remote procedure call (RPC) mechanism permits the calling of procedures in another address space. RPC is a simple but highly effective mechanism for interprocess communication and enjoys nowadays a great popularity as a tool for building distributed applications. This popularity is partly a result of their overall simplicity but also partly a consequence of more than 20 years of research in transpaxent distribution that have failed to deliver systems that meet the expectations of real-world application programmers. During the same 20 years, persistent systems have proved their suitability for building complex database applications by seamlessly integrating features traditionally found in database management systems into the programming language itself. Some research. effort has been invested on distributed persistent systems, but the outcomes commonly suffer from the same problems found with transparent distribution. In this thesis I claim that a higher-order persistent RPC is useful for building distributed persistent applications. The proposed mechanism is: realistic in the sense that it uses current technology and tolerates partial failures; understandable by application programmers; and general to support the development of many classes of distributed persistent applications. In order to demonstrate the validity of these claims, I propose and have implemented three models for distributed higher-order computation over autonomous persistent stores. Each model has successively exposed new problems which have then been overcome by the next model. Together, the three models provide a general yet simple higher-order persistent RPC that is able to operate in realistic environments with partial failures. The real strength of this thesis is the demonstration of realism and simplicity. A higherorder persistent RPC was not only implemented but also used by programmers without experience of programming distributed applications. Furthermore, a distributed persistent application has been built using these models which would not have been feasible with a traditional (non-persistent) programming language

    Building object-oriented software with the D-Bus messaging system

    Get PDF
    Object-oriented programming is a widely adopted paradigm for desktop software development. This paradigm partitions software into separate entities, objects, which consist of data and related procedures used to modify and inspect it. The paradigm has evolved during the last few decades to emphasize decoupling between object implementations, via means such as explicit interface inheritance and event-based implicit invocation. Inter-process communication (IPC) technologies allow applications to interact with each other. This enables making software distributed across multiple processes, resulting in a modular architecture with benefits in resource sharing, robustness, code reuse and security. The support for object-oriented programming concepts varies between IPC systems. This thesis is focused on the D-Bus system, which has recently gained a lot of users, but is still scantily researched. D-Bus has support for asynchronous remote procedure calls with return values and a content-based publish/subscribe event delivery mechanism. In this thesis, several patterns for method invocation in D-Bus and similar systems are compared. The patterns that simulate synchronous local calls are shown to be dangerous. Later, we present a state-caching proxy construct, which avoids the complexity of properly asynchronous calls for object inspection. The proxy and certain supplementary constructs are presented conceptually as generic object-oriented design patterns. The e ect of these patterns on non-functional qualities of software, such as complexity, performance and power consumption, is reasoned about based on the properties of the D-Bus system. The use of the patterns reduces complexity, but maintains the other qualities at a good level. Finally, we present currently existing means of specifying D-Bus object interfaces for the purposes of code and documentation generation. The interface description language used by the Telepathy modular IM/VoIP framework is found to be an useful extension of the basic D-Bus introspection format.Siirretty Doriast

    Adapting Agent Platforms to Web Service Environments

    Get PDF
    This master thesis tries to address the above-mentioned issues by creating an agent plat- form suitable for encapsulating web-services into agents, providing them with typical agent capabilities (such as learning or complex communication and reasoning mechanisms). The objective of this point is to create a generic, modular agent platform that is able to run lightweight agents. The agents should be able to easily invoke web-services, e ectively encapsulating them. They also should be able to easily coordinate for composing the invoked services in order to perform complex tasks. Thus, the platform must provide facilities to allow the agents perform these service invocations

    Ada (trademark) projects at NASA. Runtime environment issues and recommendations

    Get PDF
    Ada practitioners should use this document to discuss and establish common short term requirements for Ada runtime environments. The major current Ada runtime environment issues are identified through the analysis of some of the Ada efforts at NASA and other research centers. The runtime environment characteristics of major compilers are compared while alternate runtime implementations are reviewed. Modifications and extensions to the Ada Language Reference Manual to address some of these runtime issues are proposed. Three classes of projects focusing on the most critical runtime features of Ada are recommended, including a range of immediately feasible full scale Ada development projects. Also, a list of runtime features and procurement issues is proposed for consideration by the vendors, contractors and the government

    Software Packaging

    Get PDF
    Many computer programs cannot be easily integrated because their components are distributed and heterogeneous, i.e., they are implemented in diverse programming languages, use different data representation formats, or their runtime environments are incom patible. In many cases, programs are integrated by modifying their components or interposing mechanisms that handle communication and conversion tasks. For example, remote procedure call (RPC) helps integrate heterogeneous, distributed programs. When conf iguring such programs, however, mechanisms like RPC must be used explicitly by software developers in order to integrate collections of diverse components. Each collection may require a unique integration solution. This thesis describes a process called software packaging that automatically determines how to integrate a diverse collection of computer programs based on the types of components involved and the capabilities of available translators and adapters in an environment. Whereas previous efforts focused solely on integration mechanisms, software packaging provides a context that relates such mechanisms to software integration processes. We demonstrate the value of this approach by reducing the cost of configuring applications whose components are distributed and implemented in different programming languages. Our software packaging tool subsumes traditional integration tools like UNIX MAKE by providing a rule-based approach to software integration that is independent of execution environments. (Also cross-referenced as UMIACS-TR-93-56
    corecore