342 research outputs found

    Structural correlates of semantic and phonemic fluency ability in first and second languages

    Get PDF
    Category and letter fluency tasks are commonly used clinically to investigate the semantic and phonological processes central to speech production, but the neural correlates of these processes are difficult to establish with functional neuroimaging because of the relatively unconstrained nature of the tasks. This study investigated whether differential performance on semantic (category) and phonemic (letter) fluency in neurologically normal participants was reflected in regional gray matter density. The participants were 59 highly proficient speakers of 2 languages. Our findings corroborate the importance of the left inferior temporal cortex in semantic relative to phonemic fluency and show this effect to be the same in a first language (L1) and second language (L2). Additionally, we show that the pre-supplementary motor area (pre-SMA) and head of caudate bilaterally are associated with phonemic more than semantic fluency, and this effect is stronger for L2 than L1 in the caudate nuclei. To further validate these structural results, we reanalyzed previously reported functional data and found that pre-SMA and left caudate activation was higher for phonemic than semantic fluency. On the basis of our findings, we also predict that lesions to the pre-SMA and caudate nuclei may have a greater impact on phonemic than semantic fluency, particularly in L2 speakers

    The role of the left head of caudate in suppressing irrelevant words

    Get PDF
    Suppressing irrelevant words is essential to successful speech production and is expected to involve general control mechanisms that reduce interference from task-unrelated processing. To investigate the neural mechanisms that suppress visual word interference, we used fMRI and a Stroop task, using a block design with an event-related analysis. Participants indicated with a finger press whether a visual stimulus was colored pink or blue. The stimulus was either the written word "BLUE," the written word "PINK," or a string of four Xs, with word interference introduced when the meaning of the word and its color were "incongruent" (e.g., BLUE in pink hue) relative to congruent (e.g., BLUE in blue) or neutral (e.g., XXXX in pink). The participants also made color decisions in the presence of spatial interference rather than word interference (i.e., the Simon task). By blocking incongruent, congruent, and neutral trials, we identified activation related to the mechanisms that suppress interference as that which was greater at the end relative to the start of incongruency. This highlighted the role of the left head of caudate in the control of word interference but not spatial interference. The response in the left head of caudate contrasted to bilateral inferior frontal activation that was greater at the start than at the end of incongruency, and to the dorsal anterior cingulate gyrus which responded to a change in the motor response. Our study therefore provides novel insights into the role of the left head of caudate in the mechanisms that suppress word interference

    Independent circuits in basal ganglia and cortex for the processing of reward and precision feedback

    Full text link
    In order to understand human decision making it is necessary to understand how the brain uses feedback to guide goal-directed behavior. The ventral striatum (VS) appears to be a key structure in this function, responding strongly to explicit reward feedback. However, recent results have also shown striatal activity following correct task performance even in the absence of feedback. This raises the possibility that, in addition to processing external feedback, the dopamine-centered reward circuit might regulate endogenous reinforcement signals, like those triggered by satisfaction in accurate task performance. Here we use functional magnetic resonance imaging (fMRI) to test this idea. Participants completed a simple task that garnered both reward feedback and feedback about the precision of performance. Importantly, the design was such that we could manipulate information about the precision of performance within different levels of reward magnitude. Using parametric modulation and functional connectivity analysis we identified brain regions sensitive to each of these signals. Our results show a double dissociation: frontal and posterior cingulate regions responded to explicit reward but were insensitive to task precision, whereas the dorsal striatum - and putamen in particular - was insensitive to reward but responded strongly to precision feedback in reward-present trials. Both types of feedback activated the VS, and sensitivity in this structure to precision feedback was predicted by personality traits related to approach behavior and reward responsiveness. Our findings shed new light on the role of specific brain regions in integrating different sources of feedback to guide goal-directed behavior

    Age of second language acquisition affects nonverbal conflict processing in children : an fMRI study

    Get PDF
    Background: In their daily communication, bilinguals switch between two languages, a process that involves the selection of a target language and minimization of interference from a nontarget language. Previous studies have uncovered the neural structure in bilinguals and the activation patterns associated with performing verbal conflict tasks. One question that remains, however is whether this extra verbal switching affects brain function during nonverbal conflict tasks. Methods: In this study, we have used fMRI to investigate the impact of bilingualism in children performing two nonverbal tasks involving stimulus-stimulus and stimulus-response conflicts. Three groups of 8-11-year-old children - bilinguals from birth (2L1), second language learners (L2L), and a control group of monolinguals (1L1) - were scanned while performing a color Simon and a numerical Stroop task. Reaction times and accuracy were logged. Results: Compared to monolingual controls, bilingual children showed higher behavioral congruency effect of these tasks, which is matched by the recruitment of brain regions that are generally used in general cognitive control, language processing or to solve language conflict situations in bilinguals (caudate nucleus, posterior cingulate gyrus, STG, precuneus). Further, the activation of these areas was found to be higher in 2L1 compared to L2L. Conclusion: The coupling of longer reaction times to the recruitment of extra language-related brain areas supports the hypothesis that when dealing with language conflicts the specialization of bilinguals hampers the way they can process with nonverbal conflicts, at least at early stages in life

    Decision-making after continuous wins or losses in a randomized guessing task: implications for how the prior selection results affect subsequent decision-making

    Get PDF
    BACKGROUND: Human decision-making is often affected by prior selections and their outcomes, even in situations where decisions are independent and outcomes are unpredictable. METHODS: In this study, we created a task that simulated real-life non-strategic gambling to examine the effect of prior outcomes on subsequent decisions in a group of male college students. RESULTS: Behavioral performance showed that participants needed more time to react after continuous losses (LOSS) than continuous wins (WIN) and discontinuous outcomes (CONTROL). In addition, participants were more likely to repeat their selections in both WIN and LOSS conditions. Functional MRI data revealed that decisions in WINs were associated with increased activation in the mesolimbic pathway, but decreased activation in the inferior frontal gyrus relative to LOSS. Increased prefrontal cortical activation was observed during LOSS relative to WIN and CONTROL conditions. CONCLUSION: Taken together, the behavioral and neuroimaging findings suggest that participants tended to repeat previous selections during LOSS trials, a pattern resembling the gambler’s fallacy. However, during WIN trials, participants tended to follow their previous lucky decisions, like the ‘hot hand’ fallacy

    Information content and reward processing in the human striatum during performance of a declarative memory task

    Get PDF
    Negative feedback can signal poor performance, but it also provides information that can help learners reach the goal of task mastery. The primary aim of this study was to test the hypothesis that the amount of information provided by negative feedback during a paired-associate learning task influences feedback-related processing in the caudate nucleus. To do this, we manipulated the number of response options: With two options, positive and negative feedback provide equal amounts of information, whereas with four options, positive feedback provides more information than does negative feedback. We found that positive and negative feedback activated the caudate similarly when there were two response options. With four options, the caudate’s response to negative feedback was reduced. A secondary goal was to investigate the link between brain-based measures of feedback-related processing and behavioral indices of learning. Analysis of the posttest measures showed that trials with positive feedback were associated with higher posttest confidence ratings. Additionally, when positive feedback was delivered, caudate activity was greater for trials with high than with low posttest confidence. This experiment demonstrated the context sensitivity of feedback processing and provided evidence that feedback processing in the striatum can contribute to the strengthening of the representations available within declarative memory

    Brain-behavior relationships in incidental learning of non-native phonetic categories

    Get PDF
    Available online 12 September 2019.Research has implicated the left inferior frontal gyrus (LIFG) in mapping acoustic-phonetic input to sound category representations, both in native speech perception and non-native phonetic category learning. At issue is whether this sensitivity reflects access to phonetic category information per se or to explicit category labels, the latter often being required by experimental procedures. The current study employed an incidental learning paradigm designed to increase sensitivity to a difficult non-native phonetic contrast without inducing explicit awareness of the categorical nature of the stimuli. Functional MRI scans revealed frontal sensitivity to phonetic category structure both before and after learning. Additionally, individuals who succeeded most on the learning task showed the largest increases in frontal recruitment after learning. Overall, results suggest that processing novel phonetic category information entails a reliance on frontal brain regions, even in the absence of explicit category labels.This research was supported by NIH grant R01 DC013064 to EBM and NIH NIDCD Grant R01 DC006220 to SEB. The authors thank F. Sayako Earle for assistance with stimulus development; members of the Language and Brain lab for help with data collection and their feedback throughout the project; Elisa Medeiros for assistance with collection of fMRI data; Paul Taylor for assistance with neuroimaging analyses; and attendees of the 2016 Meeting of the Psychonomic Society and the 2017 Meeting of the Society for Neurobiology of Language for helpful feedback on this project. We also extend thanks to two anonymous reviewers for helpful feedback on a previous version of this manuscript
    corecore