4,216 research outputs found

    A Concurrency Control Method Based on Commitment Ordering in Mobile Databases

    Full text link
    Disconnection of mobile clients from server, in an unclear time and for an unknown duration, due to mobility of mobile clients, is the most important challenges for concurrency control in mobile database with client-server model. Applying pessimistic common classic methods of concurrency control (like 2pl) in mobile database leads to long duration blocking and increasing waiting time of transactions. Because of high rate of aborting transactions, optimistic methods aren`t appropriate in mobile database. In this article, OPCOT concurrency control algorithm is introduced based on optimistic concurrency control method. Reducing communications between mobile client and server, decreasing blocking rate and deadlock of transactions, and increasing concurrency degree are the most important motivation of using optimistic method as the basis method of OPCOT algorithm. To reduce abortion rate of transactions, in execution time of transactions` operators a timestamp is assigned to them. In other to checking commitment ordering property of scheduler, the assigned timestamp is used in server on time of commitment. In this article, serializability of OPCOT algorithm scheduler has been proved by using serializability graph. Results of evaluating simulation show that OPCOT algorithm decreases abortion rate and waiting time of transactions in compare to 2pl and optimistic algorithms.Comment: 15 pages, 13 figures, Journal: International Journal of Database Management Systems (IJDMS

    Optimistic concurrency control revisited

    Full text link
    Several years ago optimistic concurrency control gained much attention in the database community. However, two-phase locking was already well established, especially in the relational database market. Concerning traditional database systems most developers felt that pessimistic concurrency control might not be the best solution for concurrency control, but, a well-known and accepted one. With the work on new generation database systems, however, there has been a revival of optimistic concurrency control (at least a partial one). This paper will reconsider optimistic concurrency control. It will lay bare the shortcomings of the original approach and present some major improvements. Moreover, several techniques will be presented which especially support read transactions with the consequence that the number of backups can be decreased substantially. Finally, a general solution for the starvation problem is presented. The solution is perfectly consistent with the underlying optimistic approach
    corecore