33,426 research outputs found

    FAST TCP: Motivation, Architecture, Algorithms, Performance

    Get PDF
    We describe FAST TCP, a new TCP congestion control algorithm for high-speed long-latency networks, from design to implementation. We highlight the approach taken by FAST TCP to address the four difficulties which the current TCP implementation has at large windows. We describe the architecture and summarize some of the algorithms implemented in our prototype. We characterize its equilibrium and stability properties. We evaluate it experimentally in terms of throughput, fairness, stability, and responsiveness

    On the quality of VoIP with DCCP for satellite communications

    Get PDF
    We present experimental results for the performance of selected voice codecs using DCCP with CCID4 congestion control over a satellite link. We evaluate the performance of both constant and variable data rate speech codecs for a number of simultaneous calls using the ITU E-model. We analyse the sources of packet losses and additionally analyse the effect of jitter which is one of the crucial parameters contributing to VoIP quality and has, to the best of our knowledge, not been considered previously in the published DCCP performance results. We propose modifications to the CCID4 algorithm and demonstrate how these improve the VoIP performance, without the need for additional link information other than what is already monitored by CCID4. We also demonstrate the fairness of the proposed modifications to other flows. Although the recently adopted changes to TFRC specification alleviate some of the performance issues for VoIP on satellite links, we argue that the characteristics of commercial satellite links necessitate consideration of further improvements. We identify the additional benefit of DCCP when used in VoIP admission control mechanisms and draw conclusions about the advantages and disadvantages of the proposed DCCP/CCID4 congestion control mechanism for use with VoIP applications

    SSthreshless Start: A Sender-Side TCP Intelligence for Long Fat Network

    Full text link
    Measurement shows that 85% of TCP flows in the internet are short-lived flows that stay most of their operation in the TCP startup phase. However, many previous studies indicate that the traditional TCP Slow Start algorithm does not perform well, especially in long fat networks. Two obvious problems are known to impact the Slow Start performance, which are the blind initial setting of the Slow Start threshold and the aggressive increase of the probing rate during the startup phase regardless of the buffer sizes along the path. Current efforts focusing on tuning the Slow Start threshold and/or probing rate during the startup phase have not been considered very effective, which has prompted an investigation with a different approach. In this paper, we present a novel TCP startup method, called threshold-less slow start or SSthreshless Start, which does not need the Slow Start threshold to operate. Instead, SSthreshless Start uses the backlog status at bottleneck buffer to adaptively adjust probing rate which allows better seizing of the available bandwidth. Comparing to the traditional and other major modified startup methods, our simulation results show that SSthreshless Start achieves significant performance improvement during the startup phase. Moreover, SSthreshless Start scales well with a wide range of buffer size, propagation delay and network bandwidth. Besides, it shows excellent friendliness when operating simultaneously with the currently popular TCP NewReno connections.Comment: 25 pages, 10 figures, 7 table

    Optimizing Service Differentiation Scheme with Sized-based Queue Management in DiffServ Networks

    Get PDF
    In this paper we introduced Modified Sized-based Queue Management as a dropping scheme that aims to fairly prioritize and allocate more service to VoIP traffic over bulk data like FTP as the former one usually has small packet size with less impact to the network congestion. In the same time, we want to guarantee that this prioritization is fair enough for both traffic types. On the other hand we study the total link delay over the congestive link with the attempt to alleviate this congestion as much as possible at the by function of early congestion notification. Our M-SQM scheme has been evaluated with NS2 experiments to measure the packets received from both and total link-delay for different traffic. The performance evaluation results of M-SQM have been validated and graphically compared with the performance of other three legacy AQMs (RED, RIO, and PI). It is depicted that our M-SQM outperformed these AQMs in providing QoS level of service differentiation.Comment: 10 pages, 9 figures, 1 table, Submitted to Journal of Telecommunication
    corecore