500 research outputs found

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process

    Future Trends and Challenges for Mobile and Convergent Networks

    Get PDF
    Some traffic characteristics like real-time, location-based, and community-inspired, as well as the exponential increase on the data traffic in mobile networks, are challenging the academia and standardization communities to manage these networks in completely novel and intelligent ways, otherwise, current network infrastructures can not offer a connection service with an acceptable quality for both emergent traffic demand and application requisites. In this way, a very relevant research problem that needs to be addressed is how a heterogeneous wireless access infrastructure should be controlled to offer a network access with a proper level of quality for diverse flows ending at multi-mode devices in mobile scenarios. The current chapter reviews recent research and standardization work developed under the most used wireless access technologies and mobile access proposals. It comprehensively outlines the impact on the deployment of those technologies in future networking environments, not only on the network performance but also in how the most important requirements of several relevant players, such as, content providers, network operators, and users/terminals can be addressed. Finally, the chapter concludes referring the most notable aspects in how the environment of future networks are expected to evolve like technology convergence, service convergence, terminal convergence, market convergence, environmental awareness, energy-efficiency, self-organized and intelligent infrastructure, as well as the most important functional requisites to be addressed through that infrastructure such as flow mobility, data offloading, load balancing and vertical multihoming.Comment: In book 4G & Beyond: The Convergence of Networks, Devices and Services, Nova Science Publishers, 201

    Network reputation-based quality optimization of video delivery in heterogeneous wireless environments

    Get PDF
    The mass-market adoption of high-end mobile devices and increasing amount of video traffic has led the mobile operators to adopt various solutions to help them cope with the explosion of mobile broadband data traffic, while ensuring high Quality of Service (QoS) levels to their services. Deploying small-cell base stations within the existing macro-cellular networks and offloading traffic from the large macro-cells to the small cells is seen as a promising solution to increase capacity and improve network performance at low cost. Parallel use of diverse technologies is also employed. The result is a heterogeneous network environment (HetNets), part of the next generation network deployments. In this context, this thesis makes a step forward towards the “Always Best Experience” paradigm, which considers mobile users seamlessly roaming in the HetNets environment. Supporting ubiquitous connectivity and enabling very good quality of rich mobile services anywhere and anytime is highly challenging, mostly due to the heterogeneity of the selection criteria, such as: application requirements (e.g., voice, video, data, etc.); different device types and with various capabilities (e.g., smartphones, netbooks, laptops, etc.); multiple overlapping networks using diverse technologies (e.g., Wireless Local Area Networks (IEEE 802.11), Cellular Networks Long Term Evolution (LTE), etc.) and different user preferences. In fact, the mobile users are facing a complex decision when they need to dynamically select the best value network to connect to in order to get the “Always Best Experience”. This thesis presents three major contributions to solve the problem described above: 1) The Location-based Network Prediction mechanism in heterogeneous wireless networks (LNP) provides a shortlist of best available networks to the mobile user based on his location, history record and routing plan; 2) Reputation-oriented Access Network Selection mechanism (RANS) selects the best reputation network from the available networks for the mobile user based on the best trade-off between QoS, energy consumptions and monetary cost. The network reputation is defined based on previous user-network interaction, and consequent user experience with the network. 3) Network Reputation-based Quality Optimization of Video Delivery in heterogeneous networks (NRQOVD) makes use of a reputation mechanism to enhance the video content quality via multipath delivery or delivery adaptation

    A real-time power monitoring and energy-efficient network/interface selection tool for android smartphones

    Get PDF
    Energy efficiency in wireless and cellular networks has become one of the most important concerns for both academia and industry due to battery dependence of mobile devices. In this regard, Wireless Network Interface Cards (WNICs) of mobile devices have to be taken into account carefully as they consume an important chunk of the system's total energy. In this paper, we propose a real-time network power consumption profiler and an energy-aware network/interface selection tool for Android-based smartphones. The tool has been freely released on the Android Play Store. The proposed solution reports the power consumption levels of different network interfaces (Wi-Fi and Cellular) by making use of actual packet measurements and precise computations, and enables the devices to handover horizontally/vertically in order to improve the energy efficiency. In this context, widespread analyses have been executed to show the accuracy of the proposed tool. The results demonstrate that the proposed tool is very accurate for any type of IEEE 802.11 wireless or cellular stations, regardless of having different amount of channel utilization, transmission rates, signal strengths or traffic types

    A real-time power monitoring and energy-efficient network/interface selection tool for android smartphones

    Get PDF
    Energy efficiency in wireless and cellular networks has become one of the most important concerns for both academia and industry due to battery dependence of mobile devices. In this regard, Wireless Network Interface Cards (WNICs) of mobile devices have to be taken into account carefully as they consume an important chunk of the system's total energy. In this paper, we propose a real-time network power consumption profiler and an energy-aware network/interface selection tool for Android-based smartphones. The tool has been freely released on the Android Play Store. The proposed solution reports the power consumption levels of different network interfaces (Wi-Fi and Cellular) by making use of actual packet measurements and precise computations, and enables the devices to handover horizontally/vertically in order to improve the energy efficiency. In this context, widespread analyses have been executed to show the accuracy of the proposed tool. The results demonstrate that the proposed tool is very accurate for any type of IEEE 802.11 wireless or cellular stations, regardless of having different amount of channel utilization, transmission rates, signal strengths or traffic types

    Models and Methods for Network Selection and Balancing in Heterogeneous Scenarios

    Get PDF
    The outbreak of 5G technologies for wireless communications can be considered a response to the need for widespread coverage, in terms of connectivity and bandwidth, to guarantee broadband services, such as streaming or on-demand programs offered by the main television networks or new generation services based on augmented and virtual reality (AR / VR). The purpose of the study conducted for this thesis aims to solve two of the main problems that will occur with the outbreak of 5G, that is, the search for the best possible connectivity, in order to offer users the resources necessary to take advantage of the new generation services, and multicast as required by the eMBMS. The aim of the thesis is the search for innovative algorithms that will allow to obtain the best connectivity to offer users the resources necessary to use the 5G services in a heterogeneous scenario. Study UF that allows you to improve the search for the best candidate network and to achieve a balance that allows you to avoid congestion of the chosen networks. To achieve these two important focuses, I conducted a study on the main mathematical methods that made it possible to select the network based on QoS parameters based on the type of traffic made by users. A further goal was to improve the computational computation performance they present. Furthermore, I carried out a study in order to obtain an innovative algorithm that would allow the management of multicast. The algorithm that has been implemented responds to the needs present in the eMBMS, in realistic scenarios
    corecore