871 research outputs found

    Congestion and medium access control in 6LoWPAN WSN

    Get PDF
    In computer networks, congestion is a condition in which one or more egressinterfaces are offered more packets than are forwarded at any given instant [1]. In wireless sensor networks, congestion can cause a number of problems including packet loss, lower throughput and poor energy efficiency. These problems can potentially result in a reduced deployment lifetime and underperforming applications. Moreover, idle radio listening is a major source of energy consumption therefore low-power wireless devices must keep their radio transceivers off to maximise their battery lifetime. In order to minimise energy consumption and thus maximise the lifetime of wireless sensor networks, the research community has made significant efforts towards power saving medium access control protocols with Radio Duty Cycling. However, careful study of previous work reveals that radio duty cycle schemes are often neglected during the design and evaluation of congestion control algorithms. This thesis argues that the presence (or lack) of radio duty cycle can drastically influence the performance of congestion control mechanisms. To investigate if previous findings regarding congestion control are still applicable in IPv6 over low power wireless personal area and duty cycling networks; some of the most commonly used congestion detection algorithms are evaluated through simulations. The research aims to develop duty cycle aware congestion control schemes for IPv6 over low power wireless personal area networks. The proposed schemes must be able to maximise the networks goodput, while minimising packet loss, energy consumption and packet delay. Two congestion control schemes, namely DCCC6 (Duty Cycle-Aware Congestion Control for 6LoWPAN Networks) and CADC (Congestion Aware Duty Cycle MAC) are proposed to realise this claim. DCCC6 performs congestion detection based on a dynamic buffer. When congestion occurs, parent nodes will inform the nodes contributing to congestion and rates will be readjusted based on a new rate adaptation scheme aiming for local fairness. The child notification procedure is decided by DCCC6 and will be different when the network is duty cycling. When the network is duty cycling the child notification will be made through unicast frames. On the contrary broadcast frames will be used for congestion notification when the network is not duty cycling. Simulation and test-bed experiments have shown that DCCC6 achieved higher goodput and lower packet loss than previous works. Moreover, simulations show that DCCC6 maintained low energy consumption, with average delay times while it achieved a high degree of fairness. CADC, uses a new mechanism for duty cycle adaptation that reacts quickly to changing traffic loads and patterns. CADC is the first dynamic duty cycle pro- tocol implemented in Contiki Operating system (OS) as well as one of the first schemes designed based on the arbitrary traffic characteristics of IPv6 wireless sensor networks. Furthermore, CADC is designed as a stand alone medium access control scheme and thus it can easily be transfered to any wireless sensor network architecture. Additionally, CADC does not require any time synchronisation algorithms to operate at the nodes and does not use any additional packets for the exchange of information between the nodes (For example no overhead). In this research, 10000 simulation experiments and 700 test-bed experiments have been conducted for the evaluation of CADC. These experiments demonstrate that CADC can successfully adapt its cycle based on traffic patterns in every traffic scenario. Moreover, CADC consistently achieved the lowest energy consumption, very low packet delay times and packet loss, while its goodput performance was better than other dynamic duty cycle protocols and similar to the highest goodput observed among static duty cycle configurations

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    PSA: The Packet Scheduling Algorithm for Wireless Sensor Networks

    Full text link
    The main cause of wasted energy consumption in wireless sensor networks is packet collision. The packet scheduling algorithm is therefore introduced to solve this problem. Some packet scheduling algorithms can also influence and delay the data transmitting in the real-time wireless sensor networks. This paper presents the packet scheduling algorithm (PSA) in order to reduce the packet congestion in MAC layer leading to reduce the overall of packet collision in the system The PSA is compared with the simple CSMA/CA and other approaches using network topology benchmarks in mathematical method. The performances of our PSA are better than the standard (CSMA/CA). The PSA produces better throughput than other algorithms. On other hand, the average delay of PSA is higher than previous works. However, the PSA utilizes the channel better than all algorithms

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    An efficient multichannel wireless sensor networks MAC protocol based on IEEE 802.11 distributed co-ordinated function.

    Get PDF
    This research aimed to create new knowledge and pioneer a path in the area relating to future trends in the WSN, by resolving some of the issues at the MAC layer in Wireless Sensor Networks. This work introduced a Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks. This work commenced by surveying different protocols: contention-based MAC protocols, transport layer protocols, cross-layered design and multichannel multi-radio assignments. A number of existing protocols were analysed, each attempting to resolve one or more problems faced by the current layers. The 802.15.4 performed very poorly at high data rate and at long range. Therefore 802.15.4 is not suitable for sensor multimedia or surveillance system with streaming data for future multichannel multi-radio systems. A survey on 802.11 DCF - which was designed mainly for wireless networks –supports and confirm that it has a power saving mechanism which is used to synchronise nodes. However it uses a random back-off mechanism that cannot provide deterministic upper bounds on channel access delay and as such cannot support real-time traffic. The weaknesses identified by surveying this protocol form the backbone of this thesis The overall aim for this thesis was to introduce multichannel with single radio as a new paradigm for IEEE 802.11 Distributed Coordinated Function (DCF) in wireless sensor networks (WSNs) that is used in a wide range of applications, from military application, environmental monitoring, medical care, smart buildings and other industry and to extend WSNs with multimedia capability which sense for instance sounds or motion, video sensor which capture video events of interest. Traditionally WSNs do not need high data rate and throughput, since events are normally captured periodically. With the paradigm shift in technology, multimedia streaming has become more demanding than data sensing applications as such the need for high data rate protocol for WSN which is an emerging technology in this area. The IEEE 802.11 can support data rates up to 54Mbps and 802.11 DCF was designed specifically for use in wireless networks. This thesis focused on designing an algorithm that applied multichannel to IEEE 802.11 DCF back-off algorithm to reduce the waiting time of a node and increase throughput when attempting to access the medium. Data collection in WSN tends to suffer from heavy congestion especially nodes nearer to the sink node. Therefore, this thesis proposes a contention based MAC protocol to address this problem from the inspiration of the 802.11 DCF backoff algorithm resulting from a comparison of IEEE 802.11 and IEEE 802.15.4 for Future Green Multichannel Multi-radio Wireless Sensor Networks

    PFPS: Priority-First Packet Scheduler for IEEE 802.15.4 Heterogeneous Wireless Sensor Networks

    Get PDF
    This paper presents priority-first packet scheduling approach for heterogeneous traffic flows in low data rate heterogeneous wireless sensor networks (HWSNs). A delay sensitive or emergency event occurrence demands the data delivery on the priority basis over regular monitoring sensing applications. In addition, handling sudden multi-event data and achieving their reliability requirements distinctly becomes the challenge and necessity in the critical situations. To address this problem, this paper presents distributed approach of managing data transmission for simultaneous traffic flows over multi-hop topology, which reduces the load of a sink node; and helps to make a life of the network prolong. For this reason, heterogeneous traffic flows algorithm (CHTF) algorithm classifies the each incoming packets either from source nodes or downstream hop node based on the packet priority and stores them into the respective queues. The PFPS-EDF and PFPS-FCFS algorithms present scheduling for each data packets using priority weight. Furthermore, reporting rate is timely updated based on the queue level considering their fairness index and processing rate. The reported work in this paper is validated in ns2 (ns2.32 allinone) simulator by putting the network into each distinct cases for validation of presented work and real time TestBed. The protocol evaluation presents that the distributed queue-based PFPS scheduling mechanism works efficiently using CSMA/CA MAC protocol of the IEEE 802.15.4 sensor networks
    • …
    corecore