616 research outputs found

    Qos In Cognitive Packet Networks: Adaptive Routing, Flow And Congestion Control

    Get PDF
    With the emergence of various applications that have different Quality of Service (QoS) requirements, the capability of a network to support QoS becomes more and more important and necessary. This dissertation explores QoS in Cognitive Packet Networks (CPN) by using adaptive routing, flow and congestion control. We present a detailed description and analysis of our proposed routing algorithms based on single and multiple QoS constraints. An online estimation of packet loss rate over a path is introduced. We implement and evaluate the adaptive routing scheme in an experimental CPN test-bed. Our experiments support our claims that the users can achieve their desired best-effort QoS through this routing scheme. We also propose a QoS-based flow and congestion control scheme that is built in the transport layer and specially designed to work with CPN to support users\u27 QoS while remaining friendly to TCP. Theoretical models and experimental analysis are presented. Finally we experimentally demonstrate that the proposed flow and congestion control scheme can effectively control the input flows, react to the congestion and work with our proposed adaptive routing scheme to achieve users\u27 QoS

    Real-time data flow models and congestion management for wire and wireless IP networks

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 103-111).In video streaming, network congestion compromises the video throughput performance and impairs its perceptual quality and may interrupt the display. Congestion control may take the form of rate adjustment through mechanisms by attempt to minimize the probability of congestion by adjusting the rate of the streaming video to match the available capacity of the network. This can be achieved either by adapting the quantization parameter of the video encoder or by varying the rate through a scalable video technique. This thesis proposes a congestion control protocol for streaming video where an interaction between the video source and the receiver is essential to monitor the network state. The protocol consists of adjusting the video transmission rate at the encoder whenever a change in the network conditions is observed and reported back to the sender

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation
    corecore