49,729 research outputs found

    Evaluation of the System of Disaster Management Resulting from War Operations and Terrorism in Iraq

    Get PDF
    Nowadays the science of disaster and crisis management is considered as one of the important sciences all over the world. Therefore, disaster management is considered an important and common subject that requires great efforts. So continuous research is one of the important ways to establish the best methods to evaluate and develop the management of disasters and crises. Such methods are appropriate to deal with the suffering that many countries experience from natural and environmental disasters from time to time. This research aims to show the significance of disaster and crisis management in general. It also explores the current situation related to disaster response management in Iraq. This exploration focuses on the achievement of the basic functions of the management operation (planning, organizing, directing, controlling). In addition, it identifies the weaknesses and the strengths of the current administrative system in all its elements and analyses all the problems and the defects in every element, in order to treat and solve these problems and defects by making recommendations to improve the immediate response system to serve Iraqi disaster management in the future. In order to satisfy this aim, data collection included information obtained from literatures relating to disaster and crisis management. In addition, other information was obtained from a field survey of the directories of the civil defence in Iraq. Furthermore, collective and personal interviews with specialists related to disasters and crisis resulting from the war operations and terrorism were conducted. Analysis of the data results revealed many weak points in the current system and this was confirmed by the field survey. It showed us more clearly the areas where the weak points appear in the management function, especially in the planning and organization functions. One of the most important weak points is the absence of heavy equipment, as well as the shortage of specialist engineering staff and a dependence on assistance from other service departments. This is because of the local roles and the departmental management in the government. Finally, the study reached a set of conclusions and recommendations, including providing the directories of the civil defence with the heavy rescue equipment and providing specialist trained engineering staff to deal with the disasters and crises. Moreover, it sets in place an incentive scheme for the related members of the directories of the civil defence. Such schemes encourage them to continue working to face the unnatural circumstances that Iraq is experiencing and to create an environment similar to that of developed countries in the world. This contributes to overcoming the disasters of all shapes and reduces the damage to lives and property

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Random Neural Networks and Optimisation

    Get PDF
    In this thesis we introduce new models and learning algorithms for the Random Neural Network (RNN), and we develop RNN-based and other approaches for the solution of emergency management optimisation problems. With respect to RNN developments, two novel supervised learning algorithms are proposed. The first, is a gradient descent algorithm for an RNN extension model that we have introduced, the RNN with synchronised interactions (RNNSI), which was inspired from the synchronised firing activity observed in brain neural circuits. The second algorithm is based on modelling the signal-flow equations in RNN as a nonnegative least squares (NNLS) problem. NNLS is solved using a limited-memory quasi-Newton algorithm specifically designed for the RNN case. Regarding the investigation of emergency management optimisation problems, we examine combinatorial assignment problems that require fast, distributed and close to optimal solution, under information uncertainty. We consider three different problems with the above characteristics associated with the assignment of emergency units to incidents with injured civilians (AEUI), the assignment of assets to tasks under execution uncertainty (ATAU), and the deployment of a robotic network to establish communication with trapped civilians (DRNCTC). AEUI is solved by training an RNN tool with instances of the optimisation problem and then using the trained RNN for decision making; training is achieved using the developed learning algorithms. For the solution of ATAU problem, we introduce two different approaches. The first is based on mapping parameters of the optimisation problem to RNN parameters, and the second on solving a sequence of minimum cost flow problems on appropriately constructed networks with estimated arc costs. For the exact solution of DRNCTC problem, we develop a mixed-integer linear programming formulation, which is based on network flows. Finally, we design and implement distributed heuristic algorithms for the deployment of robots when the civilian locations are known or uncertain

    Design of Ad Hoc Wireless Mesh Networks Formed by Unmanned Aerial Vehicles with Advanced Mechanical Automation

    Get PDF
    Ad hoc wireless mesh networks formed by unmanned aerial vehicles (UAVs) equipped with wireless transceivers (access points (APs)) are increasingly being touted as being able to provide a flexible "on-the-fly" communications infrastructure that can collect and transmit sensor data from sensors in remote, wilderness, or disaster-hit areas. Recent advances in the mechanical automation of UAVs have resulted in separable APs and replaceable batteries that can be carried by UAVs and placed at arbitrary locations in the field. These advanced mechanized UAV mesh networks pose interesting questions in terms of the design of the network architecture and the optimal UAV scheduling algorithms. This paper studies a range of network architectures that depend on the mechanized automation (AP separation and battery replacement) capabilities of UAVs and proposes heuristic UAV scheduling algorithms for each network architecture, which are benchmarked against optimal designs.Comment: 12 page

    Cloud Enabled Emergency Navigation Using Faster-than-real-time Simulation

    Full text link
    State-of-the-art emergency navigation approaches are designed to evacuate civilians during a disaster based on real-time decisions using a pre-defined algorithm and live sensory data. Hence, casualties caused by the poor decisions and guidance are only apparent at the end of the evacuation process and cannot then be remedied. Previous research shows that the performance of routing algorithms for evacuation purposes are sensitive to the initial distribution of evacuees, the occupancy levels, the type of disaster and its as well its locations. Thus an algorithm that performs well in one scenario may achieve bad results in another scenario. This problem is especially serious in heuristic-based routing algorithms for evacuees where results are affected by the choice of certain parameters. Therefore, this paper proposes a simulation-based evacuee routing algorithm that optimises evacuation by making use of the high computational power of cloud servers. Rather than guiding evacuees with a predetermined routing algorithm, a robust Cognitive Packet Network based algorithm is first evaluated via a cloud-based simulator in a faster-than-real-time manner, and any "simulated casualties" are then re-routed using a variant of Dijkstra's algorithm to obtain new safe paths for them to exits. This approach can be iterated as long as corrective action is still possible.Comment: Submitted to PerNEM'15 for revie
    corecore