10,621 research outputs found

    A Dataflow Language for Decentralised Orchestration of Web Service Workflows

    Full text link
    Orchestrating centralised service-oriented workflows presents significant scalability challenges that include: the consumption of network bandwidth, degradation of performance, and single points of failure. This paper presents a high-level dataflow specification language that attempts to address these scalability challenges. This language provides simple abstractions for orchestrating large-scale web service workflows, and separates between the workflow logic and its execution. It is based on a data-driven model that permits parallelism to improve the workflow performance. We provide a decentralised architecture that allows the computation logic to be moved "closer" to services involved in the workflow. This is achieved through partitioning the workflow specification into smaller fragments that may be sent to remote orchestration services for execution. The orchestration services rely on proxies that exploit connectivity to services in the workflow. These proxies perform service invocations and compositions on behalf of the orchestration services, and carry out data collection, retrieval, and mediation tasks. The evaluation of our architecture implementation concludes that our decentralised approach reduces the execution time of workflows, and scales accordingly with the increasing size of data sets.Comment: To appear in Proceedings of the IEEE 2013 7th International Workshop on Scientific Workflows, in conjunction with IEEE SERVICES 201

    Dynamic Control Flow in Large-Scale Machine Learning

    Full text link
    Many recent machine learning models rely on fine-grained dynamic control flow for training and inference. In particular, models based on recurrent neural networks and on reinforcement learning depend on recurrence relations, data-dependent conditional execution, and other features that call for dynamic control flow. These applications benefit from the ability to make rapid control-flow decisions across a set of computing devices in a distributed system. For performance, scalability, and expressiveness, a machine learning system must support dynamic control flow in distributed and heterogeneous environments. This paper presents a programming model for distributed machine learning that supports dynamic control flow. We describe the design of the programming model, and its implementation in TensorFlow, a distributed machine learning system. Our approach extends the use of dataflow graphs to represent machine learning models, offering several distinctive features. First, the branches of conditionals and bodies of loops can be partitioned across many machines to run on a set of heterogeneous devices, including CPUs, GPUs, and custom ASICs. Second, programs written in our model support automatic differentiation and distributed gradient computations, which are necessary for training machine learning models that use control flow. Third, our choice of non-strict semantics enables multiple loop iterations to execute in parallel across machines, and to overlap compute and I/O operations. We have done our work in the context of TensorFlow, and it has been used extensively in research and production. We evaluate it using several real-world applications, and demonstrate its performance and scalability.Comment: Appeared in EuroSys 2018. 14 pages, 16 figure
    • …
    corecore