31 research outputs found

    Optimization of OpenCL applications on FPGA

    Get PDF
    This document presents an evaluation of OpenCL as a mechanism to exploit FPGA resources. To evaluate it, we show a performance and energy comparison between an Intel Arria 10 and an Intel Xeon E5-2600. We also present a guide on how an OpenCL kernel needs to be ported to a FPGA

    Worst-Case Execution Time Guarantees for Runtime-Reconfigurable Architectures

    Get PDF
    Real-time systems are ubiquitous in our everyday life, e.g., in safety-critical domains such as automotive, avionics or robotics. The correctness of a real-time system does not only depend on the correctness of its calculations, but also on the non-functional requirement of adhering to deadlines. Failing to meet a deadline may lead to severe malfunctions, therefore worst-case execution times (WCET) need to be guaranteed. Despite significant scientific advances, however, timing analysis of WCET guarantees lags years behind current high-performance microarchitectures with out-of-order scheduling pipelines, several hardware threads and multiple (shared) cache layers. To satisfy the increasing performance demands of real-time systems, analyzable performance features are required. In order to escape the scarcity of timing-analyzable performance features, the main contribution of this thesis is the introduction of runtime reconfiguration of hardware accelerators onto a field-programmable gate array (FPGA) as a novel means to achieve performance that is amenable to WCET guarantees. Instead of designing an architecture for a specific application domain, this approach preserves the flexibility of the system. First, this thesis contributes novel co-scheduling approaches to distribute work among CPU and GPU in an extensive analysis of how (average-case) performance is achieved on fused CPU-GPU architectures, a main trend in current high-performance microarchitectures that combines a CPU and a GPU on a single chip. Being able to employ such architectures in real-time systems would be highly desirable, because they provide high performance within a limited area and power budget. As a result of this analysis, however, a cache coherency bottleneck is uncovered in recent fused CPU-GPU architectures that share the last level cache between CPU and GPU. This insight (i) complicates performance predictions and (ii) adds a shared last level cache between CPU and GPU to the growing list of microarchitectural features that benefit average-case performance, but render the analysis of WCET guarantees on high-performance architectures virtually infeasible. Thus, further motivating the need for novel microarchitectural features that provide predictable performance and are amenable to timing analysis. Towards this end, a runtime reconfiguration controller called ``Command-based Reconfiguration Queue\u27\u27 (CoRQ) is presented that provides guaranteed latencies for its operations, especially for the reconfiguration delay, i.e., the time it takes to reconfigure a hardware accelerator onto a reconfigurable fabric (e.g., FPGA). CoRQ enables the design of timing-analyzable runtime-reconfigurable architectures that support WCET guarantees. Based on the --now feasible-- guaranteed reconfiguration delay of accelerators, a WCET analysis is introduced that enables tasks to reconfigure application-specific custom instructions (CIs) at runtime. CIs are executed by a processor pipeline and invoke execution of one or more accelerators. Different measures to deal with reconfiguration delays are compared for their impact on accelerated WCET guarantees and overestimation. The timing anomaly of runtime reconfiguration is identified and safely bounded: a case where executing iterations of a computational kernel faster than in WCET during reconfiguration of CIs can prolong the total execution time of a task. Once tasks that perform runtime reconfiguration of CIs can be analyzed for WCET guarantees, the question of which CIs to configure on a constrained reconfigurable area to optimize the WCET is raised. The question is addressed for systems where multiple CIs with different implementations each (allowing to trade-off latency and area requirements) can be selected. This is generally the case, e.g., when employing high-level synthesis. This so-called WCET-optimizing instruction set selection problem is modeled based on the Implicit Path Enumeration Technique (IPET), which is the path analysis technique state-of-the-art timing analyzers rely on. To our knowledge, this is the first approach that enables WCET optimization with support for making use of global program flow information (and information about reconfiguration delay). An optimal algorithm (similar to Branch and Bound) and a fast greedy heuristic algorithm (that achieves the optimal solution in most cases) are presented. Finally, an approach is presented that, for the first time, combines optimized static WCET guarantees and runtime optimization of the average-case execution (maintaining WCET guarantees) using runtime reconfiguration of hardware accelerators by leveraging runtime slack (the amount of time that program parts are executed faster than in WCET). It comprises an analysis of runtime slack bounds that enable safe reconfiguration for average-case performance under WCET guarantees and presents a mechanism to monitor runtime slack using a simple performance counter that is commonly available in many microprocessors. Ultimately, this thesis shows that runtime reconfiguration of accelerators is a key feature to achieve predictable performance

    Cross layer reliability estimation for digital systems

    Get PDF
    Forthcoming manufacturing technologies hold the promise to increase multifuctional computing systems performance and functionality thanks to a remarkable growth of the device integration density. Despite the benefits introduced by this technology improvements, reliability is becoming a key challenge for the semiconductor industry. With transistor size reaching the atomic dimensions, vulnerability to unavoidable fluctuations in the manufacturing process and environmental stress rise dramatically. Failing to meet a reliability requirement may add excessive re-design cost to recover and may have severe consequences on the success of a product. %Worst-case design with large margins to guarantee reliable operation has been employed for long time. However, it is reaching a limit that makes it economically unsustainable due to its performance, area, and power cost. One of the open challenges for future technologies is building ``dependable'' systems on top of unreliable components, which will degrade and even fail during normal lifetime of the chip. Conventional design techniques are highly inefficient. They expend significant amount of energy to tolerate the device unpredictability by adding safety margins to a circuit's operating voltage, clock frequency or charge stored per bit. Unfortunately, the additional cost introduced to compensate unreliability are rapidly becoming unacceptable in today's environment where power consumption is often the limiting factor for integrated circuit performance, and energy efficiency is a top concern. Attention should be payed to tailor techniques to improve the reliability of a system on the basis of its requirements, ending up with cost-effective solutions favoring the success of the product on the market. Cross-layer reliability is one of the most promising approaches to achieve this goal. Cross-layer reliability techniques take into account the interactions between the layers composing a complex system (i.e., technology, hardware and software layers) to implement efficient cross-layer fault mitigation mechanisms. Fault tolerance mechanism are carefully implemented at different layers starting from the technology up to the software layer to carefully optimize the system by exploiting the inner capability of each layer to mask lower level faults. For this purpose, cross-layer reliability design techniques need to be complemented with cross-layer reliability evaluation tools, able to precisely assess the reliability level of a selected design early in the design cycle. Accurate and early reliability estimates would enable the exploration of the system design space and the optimization of multiple constraints such as performance, power consumption, cost and reliability. This Ph.D. thesis is devoted to the development of new methodologies and tools to evaluate and optimize the reliability of complex digital systems during the early design stages. More specifically, techniques addressing hardware accelerators (i.e., FPGAs and GPUs), microprocessors and full systems are discussed. All developed methodologies are presented in conjunction with their application to real-world use cases belonging to different computational domains

    Evaluation of Intel's DPC++ Compatibility Tool in heterogeneous computing

    Get PDF
    The Intel DPC++ Compatibility Tool is a component of the Intel oneAPI Base Toolkit. This tool automatically transforms CUDA code into Data Parallel C++ (DPC++), thus assisting in the migration process. DPC++ is an implementation of the programming standard for heterogeneous computing known as SYCL, which unifies the development of parallel applications on CPUs, GPUs or even FPGAs. This paper analyzes the DPC++ Compatibility Tool by considering the manual intervention required and the problems encountered while migrating the Rodinia benchmarks. For this suite, this tool achieves an impressive rate of almost 87% for code successfully migrated. Moreover, a comparative study of the performance obtained by the migrated code was carried out, showing a moderate overhead in most of the migrated examples. Finally, a performance comparison on different devices was also performed

    Extending the PCIe Interface with Parallel Compression/Decompression Hardware for Energy and Performance Optimization

    Get PDF
    PCIe is a high-performing interface used to move data from a central host PC to an accelerator such as Field Programmable Gate Arrays (FPGA). This interface allows a system to perform fast data transfers in High-Performance Computing (HPC) and provide a performance boost. However, HPC systems normally require large datasets, and in these situations PCIe can become a bottleneck. To address this issue, we propose an open-source hardware compression/decompression system that can be used to adapt with continuously-streamed data with low latency and high throughput. We implement a compressor and decompressor engines on FPGA, scale up with multiple engines working in parallel, and evaluate the energy reduction and performance with different numbers of multiple engines. To alleviate the performance bottleneck in the processor acting as a controller, we propose a hardware scheduler to fairly distribute the datasets among the engines. Our design reduces the transmission time in PCIe, and the results show an energy reduction of up to 48% in the PCIe transfers, thanks to the decrease in the number of bits that have to be transmitted. The overhead in terms of latency is maintained to a minimum and user selectable depending on the tolerances of the intended application

    Bio-Inspired Optimization of Ultra-Wideband Patch Antennas Using Graphics Processing Unit Acceleration

    Get PDF
    Ultra-wideband (UWB) wireless systems have recently gained considerable attention as effective communications platforms with the properties of low power and high data rates. Applications of UWB such as wireless USB put size constraints on the antenna, however, which can be very dicult to meet using typical narrow band antenna designs. The aim of this thesis is to show how bio-inspired evolutionary optimization algorithms, in particular genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO) can produce novel UWB planar patch antenna designs that meet a size constraint of a 10 mm 10 mm patch. Each potential antenna design is evaluated with the nite dierence time domain (FDTD) technique, which is accurate but time-consuming. Another aspect of this thesis is the modication of FDTD to run on a graphics processing unit (GPU) to obtain nearly a 20 speedup. With the combination of GA, PSO, BBO and GPU-accelerated FDTD, three novel antenna designs are produced that meet the size and bandwidth requirements applicable to UWB wireless USB system

    Under the hood of SYCL - an initial performance analysis with an unstructured-mesh CFD application

    Get PDF
    As the computing hardware landscape gets more diverse, and the complexity of hardware grows, the need for a general purpose parallel programming model capable of developing (performance) portable codes have become highly attractive. Intel’s OneAPI suite, which is based on the SYCL standard aims to fill this gap using a modern C++ API. In this paper, we use SYCL to parallelize MGCFD, an unstructured-mesh computational fluid dynamics (CFD) code, to explore current performance of SYCL. The code is benchmarked on several modern processor systems from Intel (including CPUs and the latest Xe LP GPU), AMD, ARM and Nvidia, making use of a variety of current SYCL compilers, with a particular focus on OneAPI and how it maps to Intel’s CPU and GPU architectures. We compare performance with other parallelisations available in OP2, including SIMD, OpenMP, MPI and CUDA. The results are mixed; the performance of this class of applications, when parallelized with SYCL, highly depends on the target architecture and the compiler, but in many cases comes close to the performance of currently prevalent parallel programming models. However, it still requires different parallelization strategies or code-paths be written for different hardware to obtain the best performanc
    corecore