16,959 research outputs found

    Optimized Performance Evaluation of LTE Hard Handover Algorithm with Average RSRP Constraint

    Full text link
    Hard handover mechanism is adopted to be used in 3GPP Long Term Evolution (3GPP LTE) in order to reduce the complexity of the LTE network architecture. This mechanism comes with degradation in system throughput as well as a higher system delay. This paper proposes a new handover algorithm known as LTE Hard Handover Algorithm with Average Received Signal Reference Power (RSRP) Constraint (LHHAARC) in order to minimize number of handovers and the system delay as well as maximize the system throughput. An optimized system performance of the LHHAARC is evaluated and compared with three well-known handover algorithms via computer simulation. The simulation results show that the LHHAARC outperforms three well-known handover algorithms by having less number of average handovers per UE per second, shorter total system delay whilst maintaining a higher total system throughput.Comment: 16 pages, 9 figures, International Journal of Wireless & Mobile Networks (IJWMN

    Localized Mobility Management for SDN-Integrated LTE Backhaul Networks

    Get PDF
    Small cell (SCell) and Software Define Network (SDN) are two key enablers to meet the evolutional requirements of future telecommunication networks, but still on the initial study stage with lots of challenges faced. In this paper, the problem of mobility management in SDN-integrated LTE (Long Term Evolution) mobile backhaul network is investigated. An 802.1ad double tagging scheme is designed for traffic forwarding between Serving Gateway (S-GW) and SCell with QoS (Quality of Service) differentiation support. In addition, a dynamic localized forwarding scheme is proposed for packet delivery of the ongoing traffic session to facilitate the mobility of UE within a dense SCell network. With this proposal, the data packets of an ongoing session can be forwarded from the source SCell to the target SCell instead of switching the whole forwarding path, which can drastically save the path-switch signalling cost in this SDN network. Numerical results show that compared with traditional path switch policy, more than 50 signalling cost can be reduced, even considering the impact on the forwarding path deletion when session ceases. The performance of data delivery is also analysed, which demonstrates the introduced extra delivery cost is acceptable and even negligible in case of short forwarding chain or large backhaul latency

    Implementation of QoS onto virtual bus network

    Get PDF
    Quality of Service (QoS) is a key issue in a multimedia environment because multimedia applications are sensitive to delay. The virtual bus architecture is a hierarchical access network structure that has been proposed to simplify network signaling. The network employs an interconnection of hierarchical database to support advanced routing of the signaling and traffic load. Therefore, the requirements and management of quality of service is important in the virtual bus network particularly to support multimedia applications. QoS and traffic parameters are specified for each class type and the OMNeT model has been described

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    Performance analysis of IMS network: the proposal of new algorithms for S-CSCF assignment

    Get PDF
    This article is focused on the proposal of three load balancing methods which can be used for a selection of S-CSCF (Serving-Call Session Control Server) server in IP Multimedia Subsystem (IMS) during the registration procedures of subscribers. All presented methods are implemented and evaluated for various inter-arrival and service times in the mathematical model based on queueing theory. In this article, two methods based on performance parameters (such as utilizations, etc.) and one method based on number of registered subscribers to each of available S-CSCF server are described. The main advantage of third method is that all related information is obtained from traffic analysis through I-CSCF (Interrogating-CSCF) node. Also, the designed methods are compared with other selection algorithms presented in previous research works by others researchers (Hwang et col., Cho et col. or Tirana et col.). The article shows that the implemented methods can optimize the service latency of whole IMS network

    Semi-persistent RRC protocol for machine-type communication devices in LTE networks

    Get PDF
    In this paper, we investigate the design of a radio resource control (RRC) protocol in the framework of long-term evolution (LTE) of the 3rd Generation Partnership Project regarding provision of low cost/complexity and low energy consumption machine-type communication (MTC), which is an enabling technology for the emerging paradigm of the Internet of Things. Due to the nature and envisaged battery-operated long-life operation of MTC devices without human intervention, energy efficiency becomes extremely important. This paper elaborates the state-of-the-art approaches toward addressing the challenge in relation to the low energy consumption operation of MTC devices, and proposes a novel RRC protocol design, namely, semi-persistent RRC state transition (SPRST), where the RRC state transition is no longer triggered by incoming traffic but depends on pre-determined parameters based on the traffic pattern obtained by exploiting the network memory. The proposed RRC protocol can easily co-exist with the legacy RRC protocol in the LTE. The design criterion of SPRST is derived and the signalling procedure is investigated accordingly. Based upon the simulation results, it is shown that the SPRST significantly reduces both the energy consumption and the signalling overhead while at the same time guarantees the quality of service requirements

    Handover parameter optimization in LTE self-organizing networks

    Get PDF
    This paper presents a self-optimizing algorithm that tunes the handover (HO) parameters of a LTE (Long-Term Evolution) base station in order to improve the overall network performance and diminish negative effects (call dropping, HO failures). The proposed algorithm picks the best hysteresis and time-to-trigger combination for the current network status. We examined the effects of this self-optimizing algorithm in a realistic scenario setting and the results show an improvement from the static value settings

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks
    corecore