968 research outputs found

    Multi-Granular Optical Cross-Connect: Design, Analysis, and Demonstration

    Get PDF
    A fundamental issue in all-optical switching is to offer efficient and cost-effective transport services for a wide range of bandwidth granularities. This paper presents multi-granular optical cross-connect (MG-OXC) architectures that combine slow (ms regime) and fast (ns regime) switch elements, in order to support optical circuit switching (OCS), optical burst switching (OBS), and even optical packet switching (OPS). The MG-OXC architectures are designed to provide a cost-effective approach, while offering the flexibility and reconfigurability to deal with dynamic requirements of different applications. All proposed MG-OXC designs are analyzed and compared in terms of dimensionality, flexibility/reconfigurability, and scalability. Furthermore, node level simulations are conducted to evaluate the performance of MG-OXCs under different traffic regimes. Finally, the feasibility of the proposed architectures is demonstrated on an application-aware, multi-bit-rate (10 and 40 Gbps), end-to-end OBS testbed

    Providing Performance Guarantees in Data Center Network Switching Fabrics

    Get PDF
    This paper proposes a novel and highly scalable multistage packet-switch design based on Networks-on-Chip (NoC). In particular, we describe a three-stage packet-switch fabric with a Round-Robin packets dispatching scheme where each central stage module is an Output-Queued Unidirectional NoC (OQ-UDN), instead of the conventional single-hop crossbar. We test the switch performance under different traffic profiles. In addition to experimental results, we present an analytical approximation for the theoretical throughput of the switch under Bernoulli i.i.d arrivals. We also provide an upper-bound estimation of the end-to-end blocking probability in the proposed switch to help predict performance and to optimize the design

    ptp++: A Precision Time Protocol Simulation Model for OMNeT++ / INET

    Get PDF
    Precise time synchronization is expected to play a key role in emerging distributed and real-time applications such as the smart grid and Internet of Things (IoT) based applications. The Precision Time Protocol (PTP) is currently viewed as one of the main synchronization solutions over a packet-switched network, which supports microsecond synchronization accuracy. In this paper, we present a PTP simulation model for OMNeT++ INET, which allows to investigate the synchronization accuracy under different network configurations and conditions. To show some illustrative simulation results using the developed module, we investigate on the network load fluctuations and their impacts on the PTP performance by considering a network with class-based quality-of-service (QoS) support. The simulation results show that the network load significantly affects the network delay symmetry, and investigate a new technique called class probing to improve the PTP accuracy and mitigate the load fluctuation effects.Comment: Published in: A. F\"orster, C. Minkenberg, G. R. Herrera, M. Kirsche (Eds.), Proc. of the 2nd OMNeT++ Community Summit, IBM Research - Zurich, Switzerland, September 3-4, 201

    Optical Networks for Future Internet Design

    Get PDF

    Performance issues in optical burst/packet switching

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01524-3_8This chapter summarises the activities on optical packet switching (OPS) and optical burst switching (OBS) carried out by the COST 291 partners in the last 4 years. It consists of an introduction, five sections with contributions on five different specific topics, and a final section dedicated to the conclusions. Each section contains an introductive state-of-the-art description of the specific topic and at least one contribution on that topic. The conclusions give some points on the current situation of the OPS/OBS paradigms
    • 

    corecore