6,173 research outputs found

    Rotational Rectification Network: Enabling Pedestrian Detection for Mobile Vision

    Full text link
    Across a majority of pedestrian detection datasets, it is typically assumed that pedestrians will be standing upright with respect to the image coordinate system. This assumption, however, is not always valid for many vision-equipped mobile platforms such as mobile phones, UAVs or construction vehicles on rugged terrain. In these situations, the motion of the camera can cause images of pedestrians to be captured at extreme angles. This can lead to very poor pedestrian detection performance when using standard pedestrian detectors. To address this issue, we propose a Rotational Rectification Network (R2N) that can be inserted into any CNN-based pedestrian (or object) detector to adapt it to significant changes in camera rotation. The rotational rectification network uses a 2D rotation estimation module that passes rotational information to a spatial transformer network to undistort image features. To enable robust rotation estimation, we propose a Global Polar Pooling (GP-Pooling) operator to capture rotational shifts in convolutional features. Through our experiments, we show how our rotational rectification network can be used to improve the performance of the state-of-the-art pedestrian detector under heavy image rotation by up to 45

    Beyond Gaussian Pyramid: Multi-skip Feature Stacking for Action Recognition

    Full text link
    Most state-of-the-art action feature extractors involve differential operators, which act as highpass filters and tend to attenuate low frequency action information. This attenuation introduces bias to the resulting features and generates ill-conditioned feature matrices. The Gaussian Pyramid has been used as a feature enhancing technique that encodes scale-invariant characteristics into the feature space in an attempt to deal with this attenuation. However, at the core of the Gaussian Pyramid is a convolutional smoothing operation, which makes it incapable of generating new features at coarse scales. In order to address this problem, we propose a novel feature enhancing technique called Multi-skIp Feature Stacking (MIFS), which stacks features extracted using a family of differential filters parameterized with multiple time skips and encodes shift-invariance into the frequency space. MIFS compensates for information lost from using differential operators by recapturing information at coarse scales. This recaptured information allows us to match actions at different speeds and ranges of motion. We prove that MIFS enhances the learnability of differential-based features exponentially. The resulting feature matrices from MIFS have much smaller conditional numbers and variances than those from conventional methods. Experimental results show significantly improved performance on challenging action recognition and event detection tasks. Specifically, our method exceeds the state-of-the-arts on Hollywood2, UCF101 and UCF50 datasets and is comparable to state-of-the-arts on HMDB51 and Olympics Sports datasets. MIFS can also be used as a speedup strategy for feature extraction with minimal or no accuracy cost

    Rotated Feature Network for multi-orientation object detection

    Full text link
    General detectors follow the pipeline that feature maps extracted from ConvNets are shared between classification and regression tasks. However, there exists obvious conflicting requirements in multi-orientation object detection that classification is insensitive to orientations, while regression is quite sensitive. To address this issue, we provide an Encoder-Decoder architecture, called Rotated Feature Network (RFN), which produces rotation-sensitive feature maps (RS) for regression and rotation-invariant feature maps (RI) for classification. Specifically, the Encoder unit assigns weights for rotated feature maps. The Decoder unit extracts RS and RI by performing resuming operator on rotated and reweighed feature maps, respectively. To make the rotation-invariant characteristics more reliable, we adopt a metric to quantitatively evaluate the rotation-invariance by adding a constrain item in the loss, yielding a promising detection performance. Compared with the state-of-the-art methods, our method can achieve significant improvement on NWPU VHR-10 and RSOD datasets. We further evaluate the RFN on the scene classification in remote sensing images and object detection in natural images, demonstrating its good generalization ability. The proposed RFN can be integrated into an existing framework, leading to great performance with only a slight increase in model complexity.Comment: 9 pages, 7 figure

    The Gap of Semantic Parsing: A Survey on Automatic Math Word Problem Solvers

    Full text link
    Solving mathematical word problems (MWPs) automatically is challenging, primarily due to the semantic gap between human-readable words and machine-understandable logics. Despite the long history dated back to the1960s, MWPs have regained intensive attention in the past few years with the advancement of Artificial Intelligence (AI). Solving MWPs successfully is considered as a milestone towards general AI. Many systems have claimed promising results in self-crafted and small-scale datasets. However, when applied on large and diverse datasets, none of the proposed methods in the literature achieves high precision, revealing that current MWP solvers still have much room for improvement. This motivated us to present a comprehensive survey to deliver a clear and complete picture of automatic math problem solvers. In this survey, we emphasize on algebraic word problems, summarize their extracted features and proposed techniques to bridge the semantic gap and compare their performance in the publicly accessible datasets. We also cover automatic solvers for other types of math problems such as geometric problems that require the understanding of diagrams. Finally, we identify several emerging research directions for the readers with interests in MWPs.Comment: 18 pages, 5 figure

    Estimation of Static and Dynamic Urban Populations with Mobile Network Metadata

    Full text link
    Communication-enabled devices routinely carried by individuals have become pervasive, opening unprecedented opportunities for collecting digital metadata about the mobility of large populations. In this paper, we propose a novel methodology for the estimation of people density at metropolitan scales, using subscriber presence metadata collected by a mobile operator. Our approach suits the estimation of static population densities, i.e., of the distribution of dwelling units per urban area contained in traditional censuses. More importantly, it enables the estimation of dynamic population densities, i.e., the time-varying distributions of people in a conurbation. By leveraging substantial real-world mobile network metadata and ground-truth information, we demonstrate that the accuracy of our solution is superior to that granted by state-of-the-art methods in practical heterogeneous urban scenarios

    Enhanced image approximation using shifted rank-1 reconstruction

    Full text link
    Low rank approximation has been extensively studied in the past. It is most suitable to reproduce rectangular like structures in the data. In this work we introduce a generalization using shifted rank-1 matrices to approximate ACM×NA\in\mathbb{C}^{M\times N}. These matrices are of the form Sλ(uv)S_{\lambda}(uv^*) where uCMu\in\mathbb{C}^M, vCNv\in\mathbb{C}^N and λZN\lambda\in\mathbb{Z}^N.The operator SλS_{\lambda} circularly shifts the k-th column of uvuv^* by λk\lambda_k. These kind of shifts naturally appear in applications, where an object uu is observed in NN measurements at different positions indicated by the shift λ\lambda. The vector vv gives the observation intensity. Exemplary, a seismic wave can be recorded at NN sensors with different time of arrival λ\lambda; Or a car moves through a video changing its position in every frame. We present theoretical results as well as an efficient algorithm to calculate a shifted rank-1 approximation in O(NMlogM)O(NM \log M). The benefit of the proposed method is demonstrated in numerical experiments. A comparison to other sparse approximation methods is given. Finally, we illustrate the utility of the extracted parameters for direct information extraction in several applications including video processing or non-destructive testing

    Robust Visual Tracking using Multi-Frame Multi-Feature Joint Modeling

    Full text link
    It remains a huge challenge to design effective and efficient trackers under complex scenarios, including occlusions, illumination changes and pose variations. To cope with this problem, a promising solution is to integrate the temporal consistency across consecutive frames and multiple feature cues in a unified model. Motivated by this idea, we propose a novel correlation filter-based tracker in this work, in which the temporal relatedness is reconciled under a multi-task learning framework and the multiple feature cues are modeled using a multi-view learning approach. We demonstrate the resulting regression model can be efficiently learned by exploiting the structure of blockwise diagonal matrix. A fast blockwise diagonal matrix inversion algorithm is developed thereafter for efficient online tracking. Meanwhile, we incorporate an adaptive scale estimation mechanism to strengthen the stability of scale variation tracking. We implement our tracker using two types of features and test it on two benchmark datasets. Experimental results demonstrate the superiority of our proposed approach when compared with other state-of-the-art trackers. project homepage http://bmal.hust.edu.cn/project/KMF2JMTtracking.htmlComment: This paper has been accepted by IEEE Transactions on Circuits and Systems for Video Technology. The MATLAB code of our method is available from our project homepage http://bmal.hust.edu.cn/project/KMF2JMTtracking.htm

    Supervised Community Detection with Line Graph Neural Networks

    Full text link
    Traditionally, community detection in graphs can be solved using spectral methods or posterior inference under probabilistic graphical models. Focusing on random graph families such as the stochastic block model, recent research has unified both approaches and identified both statistical and computational detection thresholds in terms of the signal-to-noise ratio. By recasting community detection as a node-wise classification problem on graphs, we can also study it from a learning perspective. We present a novel family of Graph Neural Networks (GNNs) for solving community detection problems in a supervised learning setting. We show that, in a data-driven manner and without access to the underlying generative models, they can match or even surpass the performance of the belief propagation algorithm on binary and multi-class stochastic block models, which is believed to reach the computational threshold. In particular, we propose to augment GNNs with the non-backtracking operator defined on the line graph of edge adjacencies. Our models also achieve good performance on real-world datasets. In addition, we perform the first analysis of the optimization landscape of training linear GNNs for community detection problems, demonstrating that under certain simplifications and assumptions, the loss values at local and global minima are not far apart.Comment: Published at International Conference on Learning Representations (ICLR 2019

    HyperFusion-Net: Densely Reflective Fusion for Salient Object Detection

    Full text link
    Salient object detection (SOD), which aims to find the most important region of interest and segment the relevant object/item in that area, is an important yet challenging vision task. This problem is inspired by the fact that human seems to perceive main scene elements with high priorities. Thus, accurate detection of salient objects in complex scenes is critical for human-computer interaction. In this paper, we present a novel feature learning framework for SOD, in which we cast the SOD as a pixel-wise classification problem. The proposed framework utilizes a densely hierarchical feature fusion network, named HyperFusion-Net, automatically predicts the most important area and segments the associated objects in an end-to-end manner. Specifically, inspired by the human perception system and image reflection separation, we first decompose input images into reflective image pairs by content-preserving transforms. Then, the complementary information of reflective image pairs is jointly extracted by an interweaved convolutional neural network (ICNN) and hierarchically combined with a hyper-dense fusion mechanism. Based on the fused multi-scale features, our method finally achieves a promising way of predicting SOD. As shown in our extensive experiments, the proposed method consistently outperforms other state-of-the-art methods on seven public datasets with a large margin.Comment: Submmited to ECCV 2018, 16 pages, including 6 figures and 4 tables. arXiv admin note: text overlap with arXiv:1802.0652

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research
    corecore