9,296 research outputs found

    An adaptive Michigan approach PSO for nearest prototype classification

    Get PDF
    Proceedings of: Second International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2007, La Manga del Mar Menor, Spain, June 18-21, 2007.Nearest Prototype methods can be quite successful on many pattern classification problems. In these methods, a collection of prototypes has to be found that accurately represents the input patterns. The classifier then assigns classes based on the nearest prototype in this collection. In this paper we develop a new algorithm (called AMPSO), based on the Particle Swarm Optimization (PSO) algorithm, that can be used to find those prototypes. Each particle in a swarm represents a single prototype in the solution; the swarm evolves using modified PSO equations with both particle competition and cooperation. Experimentation includes an artificial problem and six common application problems from the UCI data sets. The results show that the AMPSO algorithm is able to find solutions with a reduced number of prototypes that classify data with comparable or better accuracy than the 1-NN classifier. The algorithm can also be compared or improves the results of many classical algorithms in each of those problems; and the results show that AMPSO also performs significantly better than any tested algorithm in one of the problems.This article has been financed by the Spanish founded research MEC project OPLINK::UC3M, Ref: TIN2005-08818-C04-02 and CAM project UC3M-TEC-05-029

    Building nearest prototype classifiers using a Michigan approach PSO

    Get PDF
    IEEE Swarm Intelligence Symposium. Honolulu, HI, 1-5 april 2007This paper presents an application of particle swarm optimization (PSO) to continuous classification problems, using a Michigan approach. In this work, PSO is used to process training data to find a reduced set of prototypes to be used to classify the patterns, maintaining or increasing the accuracy of the nearest neighbor classifiers. The Michigan approach PSO represents each prototype by a particle and uses modified movement rules with particle competition and cooperation that ensure particle diversity. The result is that the particles are able to recognize clusters, find decision boundaries and achieve stable situations that also retain adaptation potential. The proposed method is tested both with artificial problems and with three real benchmark problems with quite promising results

    Local feature weighting in nearest prototype classification

    Get PDF
    The distance metric is the corner stone of nearest neighbor (NN)-based methods, and therefore, of nearest prototype (NP) algorithms. That is because they classify depending on the similarity of the data. When the data is characterized by a set of features which may contribute to the classification task in different levels, feature weighting or selection is required, sometimes in a local sense. However, local weighting is typically restricted to NN approaches. In this paper, we introduce local feature weighting (LFW) in NP classification. LFW provides each prototype its own weight vector, opposite to typical global weighting methods found in the NP literature, where all the prototypes share the same one. Providing each prototype its own weight vector has a novel effect in the borders of the Voronoi regions generated: They become nonlinear. We have integrated LFW with a previously developed evolutionary nearest prototype classifier (ENPC). The experiments performed both in artificial and real data sets demonstrate that the resulting algorithm that we call LFW in nearest prototype classification (LFW-NPC) avoids overfitting on training data in domains where the features may have different contribution to the classification task in different areas of the feature space. This generalization capability is also reflected in automatically obtaining an accurate and reduced set of prototypes.Publicad

    AMPSO: A new Particle Swarm Method for Nearest Neighborhood Classification

    Get PDF
    Nearest prototype methods can be quite successful on many pattern classification problems. In these methods, a collection of prototypes has to be found that accurately represents the input patterns. The classifier then assigns classes based on the nearest prototype in this collection. In this paper, we first use the standard particle swarm optimizer (PSO) algorithm to find those prototypes. Second, we present a new algorithm, called adaptive Michigan PSO (AMPSO) in order to reduce the dimension of the search space and provide more flexibility than the former in this application. AMPSO is based on a different approach to particle swarms as each particle in the swarm represents a single prototype in the solution. The swarm does not converge to a single solution; instead, each particle is a local classifier, and the whole swarm is taken as the solution to the problem. It uses modified PSO equations with both particle competition and cooperation and a dynamic neighborhood. As an additional feature, in AMPSO, the number of prototypes represented in the swarm is able to adapt to the problem, increasing as needed the number of prototypes and classes of the prototypes that make the solution to the problem. We compared the results of the standard PSO and AMPSO in several benchmark problems from the University of California, Irvine, data sets and find that AMPSO always found a better solution than the standard PSO. We also found that it was able to improve the results of the Nearest Neighbor classifiers, and it is also competitive with some of the algorithms most commonly used for classification.This work was supported by the Spanish founded research Project MSTAR::UC3M, Ref: TIN2008-06491-C04-03 and CAM Project CCG06-UC3M/ESP-0774.Publicad

    k-Nearest Neighbour Classifiers: 2nd Edition (with Python examples)

    Get PDF
    Perhaps the most straightforward classifier in the arsenal or machine learning techniques is the Nearest Neighbour Classifier -- classification is achieved by identifying the nearest neighbours to a query example and using those neighbours to determine the class of the query. This approach to classification is of particular importance because issues of poor run-time performance is not such a problem these days with the computational power that is available. This paper presents an overview of techniques for Nearest Neighbour classification focusing on; mechanisms for assessing similarity (distance), computational issues in identifying nearest neighbours and mechanisms for reducing the dimension of the data. This paper is the second edition of a paper previously published as a technical report. Sections on similarity measures for time-series, retrieval speed-up and intrinsic dimensionality have been added. An Appendix is included providing access to Python code for the key methods.Comment: 22 pages, 15 figures: An updated edition of an older tutorial on kN
    corecore