6,945 research outputs found

    An empirical comparison of supervised machine learning techniques in bioinformatics

    Get PDF
    Research in bioinformatics is driven by the experimental data. Current biological databases are populated by vast amounts of experimental data. Machine learning has been widely applied to bioinformatics and has gained a lot of success in this research area. At present, with various learning algorithms available in the literature, researchers are facing difficulties in choosing the best method that can apply to their data. We performed an empirical study on 7 individual learning systems and 9 different combined methods on 4 different biological data sets, and provide some suggested issues to be considered when answering the following questions: (i) How does one choose which algorithm is best suitable for their data set? (ii) Are combined methods better than a single approach? (iii) How does one compare the effectiveness of a particular algorithm to the others

    Predicting diabetes-related hospitalizations based on electronic health records

    Full text link
    OBJECTIVE: To derive a predictive model to identify patients likely to be hospitalized during the following year due to complications attributed to Type II diabetes. METHODS: A variety of supervised machine learning classification methods were tested and a new method that discovers hidden patient clusters in the positive class (hospitalized) was developed while, at the same time, sparse linear support vector machine classifiers were derived to separate positive samples from the negative ones (non-hospitalized). The convergence of the new method was established and theoretical guarantees were proved on how the classifiers it produces generalize to a test set not seen during training. RESULTS: The methods were tested on a large set of patients from the Boston Medical Center - the largest safety net hospital in New England. It is found that our new joint clustering/classification method achieves an accuracy of 89% (measured in terms of area under the ROC Curve) and yields informative clusters which can help interpret the classification results, thus increasing the trust of physicians to the algorithmic output and providing some guidance towards preventive measures. While it is possible to increase accuracy to 92% with other methods, this comes with increased computational cost and lack of interpretability. The analysis shows that even a modest probability of preventive actions being effective (more than 19%) suffices to generate significant hospital care savings. CONCLUSIONS: Predictive models are proposed that can help avert hospitalizations, improve health outcomes and drastically reduce hospital expenditures. The scope for savings is significant as it has been estimated that in the USA alone, about $5.8 billion are spent each year on diabetes-related hospitalizations that could be prevented.Accepted manuscrip

    A Hybrid Machine Learning Framework for Predicting Students’ Performance in Virtual Learning Environment

    Get PDF
    Virtual Learning Environments (VLE), such as Moodle and Blackboard, store vast data to help identify students\u27 performance and engagement. As a result, researchers have been focusing their efforts on assisting educational institutions in providing machine learning models to predict at-risk students and improve their performance. However, it requires an efficient approach to construct a model that can ultimately provide accurate predictions. Consequently, this study proposes a hybrid machine learning framework to predict students\u27 performance using eight classification algorithms and three ensemble methods (Bagging, Boosting, Voting) to determine the best-performing predictive model. In addition, this study used filter-based and wrapper-based feature selection techniques to select the best features of the dataset related to students\u27 performance. The obtained results reveal that the ensemble methods recorded higher predictive accuracy when compared to single classifiers. Furthermore, the accuracy of the models improved due to the feature selection techniques utilized in this study

    Predictive Framework for Imbalance Dataset

    Get PDF
    The purpose of this research is to seek and propose a new predictive maintenance framework which can be used to generate a prediction model for deterioration of process materials. Real yield data which was obtained from Fuji Electric Malaysia has been used in this research. The existing data pre-processing and classification methodologies have been adapted in this research. Properties of the proposed framework include; developing an approach to correlate materials defects, developing an approach to represent data attributes features, analyzing various ratio and types of data re-sampling, analyzing the impact of data dimension reduction for various data size, and partitioning data size and algorithmic schemes against the prediction performance. Experimental results suggested that the class probability distribution function of a prediction model has to be closer to a training dataset; less skewed environment enable learning schemes to discover better function F in a bigger Fall space within a higher dimensional feature space, data sampling and partition size is appear to proportionally improve the precision and recall if class distribution ratios are balanced. A comparative study was also conducted and showed that the proposed approaches have performed better. This research was conducted based on limited number of datasets, test sets and variables. Thus, the obtained results are applicable only to the study domain with selected datasets. This research has introduced a new predictive maintenance framework which can be used in manufacturing industries to generate a prediction model based on the deterioration of process materials. Consequently, this may allow manufactures to conduct predictive maintenance not only for equipments but also process materials. The major contribution of this research is a step by step guideline which consists of methods/approaches in generating a prediction for process materials
    • …
    corecore