20,357 research outputs found

    Evaluation of on-demand routing in mobile ad hoc networks and proposal for a secure routing protocol

    Get PDF
    Secure routing Mobile Ad hoc Networks (MANETs) has emerged as an important MANET research area. Initial work in MANET focused mainly on the problem of providing efficient mechanisms for finding paths in very dynamic networks, without considering the security of the routing process. Because of this, a number of attacks exploit these routing vulnerabilities to manipulate MANETs. In this thesis, we performed an in-depth evaluation and performance analysis of existing MANET Routing protocols, identifying Dynamic Source Routing (DSR) as the most robust (based on throughput, latency and routing overhead) which can be secured with negligible routing efficiency trade-off. We describe security threats, specifically showing their effects on DSR. We proposed a new routing protocol, named Authenticated Source Routing for Ad hoc Networks (ASRAN) which is an out-of-band certification-based, authenticated source routing protocol with modifications to the route acquisition process of DSR to defeat all identified attacks. Simulation studies confirm that ASRAN has a good trade-off balance in reference to the addition of security and routing efficiency

    The design and simulation of routing protocols for mobile ad hoc networks.

    Get PDF
    Thesis (Ph.D.)-University of Natal, Durban, 2000.This thesis addresses a novel type of network known as a mobile ad hoc network. A mobile ad hoc network is a collection of entirely mobile nodes that can establish communication in the absence of any fixed infrastructure. Envisioned applications of these networks include virtual classrooms, emergency relief operations, military tactical communications, sensor networks and community networking. Mobile ad hoc networking poses several new challenges in the design of network protocols. This thesis focuses on the routing problem. The main challenges in the design of a routing protocol for mobile ad hoc networks result from them having limited resources and there being frequent topological changes that occur unpredictably. Moreover, there is no fixed infrastructure that supports routing. The conventional routing protocols are not generally suitable for mobile ad hoc networks, as they cannot react quickly to the changing network topology, cause excessive communication and computation, or converge very slowly creating routing loops. In this thesis we propose two classes of routing schemes for mobile ad hoc networks. The first class is known as Limited Flooding Protocol. The protocol is fully reactive and does not require the computation of routing tables. It uses some basic principles of flooding, but reduces the communication overhead by restricting packet propagation through the network. Several variations of limited flooding are considered including deterministic, randomised and priority-based mechanisms. The main advantage of this protocol is that it can be used in networks with unpredictable topological changes and highly mobile nodes, since maintaining routing table at the intermediate nodes is not required. The second class of routing protocols is based on hierarchical clustering architecture and is intended for use in a relatively low mobility environment. The basic idea of this protocol is to partition the entire network into smaller units known as clusters and define routing mechanisms both within and between clusters using a hierarchical architecture. The main advantage of this architecture is reduction of storage requirements of routing information, communication overhead and computational overhead at each node. Discrete-event simulation is used for modelling and performance evaluation. Various options and variations of the protocols are examined in the…[Page 2 of abstract is missing.]Page 2 of abstract is missing

    Performance Evaluation of Scalable Video Streaming in Mobile Ad hoc Networks

    Full text link
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The development of video streaming services on wireless ad hoc networks is a challenge task as a consequence of different limitations such as bandwidth-constrained, variable capacity links and energy-constrained operation. Moreover, the dynamic topology of nodes causes frequent link failures and high error rates. We propose in this paper a performance evaluation of the scalable video streaming over mobile ad hoc networks. In particular, we focus on the rate-adaptive strategy for streaming scalable video (H.264/SVC). In order to provide QoS mechanisms in the routing process, a new routing protocol is introduced. This protocol estimates the available bandwidth value, which is sent to video source in order to adapt the bit rate during the video transmission. We also propose a simulation framework that supports evaluation studies for scalable video streaming. In the simulation experiments, SVC streams with combined scalability (quality and temporal scalability) were used. As quality scalability method, we used Medium Grain Scalability (MGS). The results reveal that the rate-adaptive method helps avoid or reduce the congestion in MANETs obtaining a better quality in the received videos.Castellanos, W.; Guerri Cebollada, JC.; Arce Vila, P. (2016). Performance Evaluation of Scalable Video Streaming in Mobile Ad hoc Networks. IEEE Latin America Transactions. 14(1):122-129. http://hdl.handle.net/10251/83347S12212914

    Solving the MANET Routing Problem using Ant Colony Algorithm

    Get PDF
    Mobile ad-hoc networks (MANETs) are a collection of mobile nodes communicating wirelessly without a centralized infrastructure. The biggest challenge in MANETs is to find a path between communicating nodes, that is, the MANET routing problem. The considerations of the MANET environment and the nature of the mobile nodes create further complications which results in the need to develop special routing algorithms to meet these challenges. Swarm Intelligence, a bio-inspired technique, which has proven to be very adaptable in other problem domains, has been applied to the MANET routing problem as it forms a good fit to the problem. In this thesis, a study of Ant Colony based routing algorithms is carried out taking into consideration two of the most popular algorithms Ant based algorithms, AntHocNet and the Ant Routing Algorithm (ARA). A thorough analyis of ARA is carried out based on the effect of its individual routing mechanisms on its routing efficacy. The original ARA algorithm, although finds the shortest path between source and destination, is observed to not be competitive against other MANET algorithms such as AODV in performance criteria. Based on the analysis performed, modifications are proposed to the ARA algorithm. Finally, a performance evaluation of the original ARA and the modified ARA is carried out with respect to each other, and with respect to AODV, a state of the art MANET routing algorithm vis-a-vis mobility criteria. The motivation behind the thesis is to realize application of MANETs in real world applications by solving the problem of routing

    Hybrid routing and bridging strategies for large scale mobile ad hoc networks

    Get PDF
    Multi-hop packet radio networks (or mobile ad-hoc networks) are an ideal technology to establish instant communication infrastructure for military and civilian applications in which both hosts and routers are mobile. In this dissertation, a position-based/link-state hybrid, proactive routing protocol (Position-guided Sliding-window Routing - PSR) that provides for a flat, mobile ad-hoc routing architecture is described, analyzed and evaluated. PSR is based on the superposition of link-state and position-based routing, and it employs a simplified way of localizing routing overhead, without having to resort to complex, multiple-tier routing organization schemes. A set of geographic routing zones is defined for each node, where the purpose of the ith routing zone is to restrict propagation of position updates, advertising position differentials equal to the radius of the (i-i )th routing zone. Thus, the proposed protocol controls position-update overhead generation and propagation by making the overhead generation rate and propagation distance directly proportional to the amount of change in a node\u27s geographic position. An analytical model and framework is provided, in order to study the various design issues and trade-offs of PSR routing mechanism, discuss their impact on the protocol\u27s operation and effectiveness, and identify optimal values for critical design parameters, under different mobility scenarios. In addition an in-depth performance evaluation, via modeling and simulation, was performed in order to demonstrate PSR\u27s operational effectiveness in terms of scalability, mobility support, and efficiency. Furthermore, power and energy metrics, such as path fading and battery capacity considerations, are integrated into the routing decision (cost function) in order to improve PSR\u27s power efficiency and network lifetime. It is demonstrated that the proposed routing protocol is ideal for deployment and implementation especially in large scale mobile ad hoc networks. Wireless local area networks (WLAN) are being deployed widely to support networking needs of both consumer and enterprise applications, and IEEE 802.11 specification is becoming the de facto standard for deploying WLAN. However IEEE 802.11 specifications allow only one hop communication between nodes. A layer-2 bridging solution is proposed in this dissertation, to increase the range of 802.11 base stations using ad hoc networking, and therefore solve the hotspot communication problem, where a large number of mobile users require Internet access through an access point. In the proposed framework nodes are divided into levels based on their distance (hops) from the access point. A layer-2 bridging tree is built based on the level concept, and a node in certain level only forwards packets to nodes in its neighboring level. The specific mechanisms for the forwarding tree establishment as well as for the data propagation are also introduced and discussed. An analytical model is also presented in order to analyze the saturation throughput of the proposed mechanism, while its applicability and effectiveness is evaluated via modeling and simulation. The corresponding numerical results demonstrate and confirm the significant area coverage extension that can be achieved by the solution, when compared with the conventional 802.1 lb scheme. Finally, for implementation purposes, a hierarchical network structure paradigm based on the combination of these two protocols and models is introduced

    Advances on Network Protocols and Algorithms for Vehicular Ad Hoc Networks

    Full text link
    Vehicular Ad Hoc Network (VANET) is an emerging area of wireless ad hoc networks that facilitates ubiquitous connectivity between smart vehicles through Vehicle-to-Vehicle (V2V) or Vehicle-to-Roadside (V2R) and Roadside-to- Vehicle (R2V) communications. This emerging field of technology aims to improve safety of passengers and traffic flow, reduces pollution to the environment and enables in-vehicle entertainment applications. The safety-related applications could reduce accidents by providing drivers with traffic information such as collision avoidances, traffic flow alarms and road surface conditions. Moreover, the passengers could exploit an available infrastructure in order to connect to the internet for infomobility and entertainment applications.Lloret, J.; Ghafoor, KZ.; Rawat, DB.; Xia, F. (2013). Advances on Network Protocols and Algorithms for Vehicular Ad Hoc Networks. Mobile Networks and Applications. 18(6):749-754. doi:10.1007/s11036-013-0490-7S749754186Lloret J, Canovas A, Catalá A, Garcia M (2013) Group-based protocol and mobility model for VANETs to offer internet access. J Netw Comput Appl 36(3):1027–1038. doi: 10.1016/j.jnca.2012.02.009Khokhar RH, Zia T, Ghafoor KZ, Lloret J, Shiraz M (2013) Realistic and efficient radio propagation model for V2X communications. KSII Trans Internet Inform Syst 7(8):1933–1953. doi: 10.3837/tiis.2013.08.011Ghafoor KZ (2013) Routing protocols in vehicular ad hoc networks: survey and research challenges, Netw Protocol Algorithm 5(4). doi: 10.5296/npa.v5i4.4134Ghafoor KZ, Bakar KA, Lloret J, Ke C-H, Lee KC (2013) Intelligent beaconless geographical routing for urban vehicular environments. Wirel Netw 19(3):345–362. doi: 10.1007/s11276-012-0470-zGhafoor KZ, Bakar KA, Lee K, AL-Hashimi H (2010) A novel delay- and reliability- aware inter-vehicle routing protocol. Netw Protocol Algorithms 2(2):66–88. doi: 10.5296/npa.v2i2.427Dias JAFF, Rodrigues JJPC, Isento JN, Pereira PRBA, Lloret J (2011) Performance assessment of fragmentation mechanisms for vehicular delay-tolerant networks. EURASIP J Wirel Commun Netw 2011(195):1–14. doi: 10.1186/1687-1499-2011-195Zhang D, Yang Z, Raychoudhury V, Chen Z, Lloret J (2013) An energy-efficient routing protocol using movement trend in vehicular Ad-hoc networks. Comput J 58(8):938–946. doi: 10.1093/comjnl/bxt028Ghafoor KZ, Lloret J, Bakar KA, Sadiq AS, Mussa SAB (2013) Beaconing approaches in vehicular Ad Hoc networks: a survey. Wirel Pers Commun. doi: 10.1007/s11277-013-1222-9Sadiq AS, Bakar KA, Ghafoor KZ, Lloret J (2013) An intelligent vertical handover scheme for audio and video streaming in heterogeneous vehicular networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0465-8Khamayseh YM (2013) Network size estimation in VANETs. Netw Protocol Algorithm 5(3):136–152. doi: 10.5296/npa.v5i6.3838Rawat DB, Popescu DC, Yan G, Olariu S (2011) Enhancing VANET performance by joint adaptation of transmission power and contention window size. IEEE Trans Parallel Distrib Syst 22(9):1528–1535Yan G, Rawat DB, Bista BB. Provisioning vehicular ad hoc networks with quality of services. Int J Space-Based Situated Comput 2(2):104–111Rawat DB, Bista BB, Yan G, Weigle MC (2011) Securing vehicular ad-hoc networks against malicious drivers: a probabilistic approach, International Conference on Complex, Intelligent, and Software Intensive Systems Pp. 146–151. June 30, 2011Sun W, Xia F, Ma J, Fu T, Sun Y. An optimal ODAM-based broadcast algorithm for vehicular Ad-Hoc Networks. KSII Trans Internet Inform Syst 6(12): 3257–3274Vinel AV, Dudin AN, Andreev SD, Xia F (2010) Performance modeling methodology of emergency dissemination algorithms for vehicular ad-hoc networks, 6th Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), Pp. 397–400AL-Hashimi HN, Bakar KA, Ghafoor KZ (2010) Inter-domain proxy mobile IPv6 based vehicular network. Netw Protocol Algorithm 2(4):1–15. doi: 10.5296/npa.v2i4.488Ghafoor KZ, Bakar KA, Mohammed MA, Lloret J (2013) Vehicular cloud computing: trends and challenges, in the book “mobile computing over cloud: technologies, services, and applications”. IGI GlobalYan G, Rawat DB, Bista BB (2012) Towards secure vehicular clouds, Sixth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS 2012), Pp. 370–375Fernández H, Rubio L, Reig J, Rodrigo-Peñarrocha VM, Valero A (2013) Path loss modeling for vehicular system performance and communication protocols evaluation. Mobile Netw Appl. doi: 10.1007/s11036-013-0463-xAllouche Y, Segal M (2013) A cluster-based beaconing approach in VANETs: near optimal topology via proximity information. Mobile Netw Appl. doi: 10.1007/s11036-013-0468-5Merah AF, Samarah S, Boukerche A, Mammeri A (2013) A sequential patterns data mining approach towards vehicular route prediction in VANETs. Mobile Netw Appl. doi: 10.1007/s11036-013-0459-6Zhang D, Huang H, Zhou J, Xia F, Chen Z (2013) Detecting hot road mobility of vehicular Ad Hoc Networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0467-6El Ajaltouni H, Boukerche A, Mammeri A (2013) A multichannel QoS MAC with dynamic transmit opportunity for. Mobile Netw Appl. doi: 10.1007/s11036-013-0475-6Reñé S, Esparza O, Alins J, Mata-Díaz J, Muñoz JL (2013) VSPLIT: a cross-layer architecture for V2I TCP services over. Mobile Netw Appl. doi: 10.1007/s11036-013-0473-8Blanco B, Liberal F (2013) Amaia Aguirregoitia, application of cognitive techniques to adaptive routing for VANETs in city environments. Mobile Netw Appl. doi: 10.1007/s11036-013-0466-7Kim J, Krunz M (2013) Spectrum-aware beaconless geographical routing protocol for cognitive radio enabled vehicular networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0476-5Dias JAFF, Rodrigues JJPC, Isento JNG, Niu J (2013) The impact of cooperative nodes on the performance of vehicular delay-tolerant networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0464-9Sadiq AS, Bakar KA, Ghafoor KZ, Lloret J, Khokhar R (2013) An intelligent vertical handover scheme for audio and video streaming in heterogeneous vehicular networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0465-8Machado S, Ozón J, González AJ, Ghafoor KZ (2013) Structured peer-to-peer real time video transmission over vehicular Ad Hoc networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0461-zLin C, Wu G, Xia F, Yao L (2013) Enhance the attacking efficiency of the node compromise attack in vehicular Ad-hoc network using connected dominating set. Mobile Netw Appl. doi: 10.1007/s11036-013-0469-

    A novel approach for the fast detection of black holes in mobile ad hoc networks

    Full text link
    Mobile ad hoc networks are infrastructure-less wireless networks that rely on node cooperation to properly work. In this kind of networks, attack detection and reaction is a key issue to the whole network. The most common threat in mobile ad hoc network scenarios consists in the presence of a certain percentage of selfish nodes, which try to reduce the consumption of their own resources to prolong their battery lifetime. Those nodes do not collaborate on forwarding activities, therefore affecting the overall network performance. Watchdogs are well-known mechanisms to detect threats and attacks from misbehaved and selfish nodes in computer networks. The problem behind the use of watchdogs is that while they can be quite effective in detecting selfishness by using their traffic overhearing behaviour, they can also cause a relatively high level of false negatives, thereby reducing their accuracy. This article proposes a collaborative approach for detecting selfish nodes in mobile ad hoc networks. It is based on using a set of collaborative watchdogs, which collaborate to enhance their individual and collective performance. By using both an analytical study and simulation, we demonstrate that our approach is able to improve accuracy and detection speed, while reducing the impact of false-negative eventsThis work was partially supported by the Ministerio de Ciencia e Innovacion, Spain, under grant TIN2011-27543-C03-01.Serrat Olmos, MD.; Hernández Orallo, E.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2013). A novel approach for the fast detection of black holes in mobile ad hoc networks. Concurrent Engineering: Research and Applications. 21(3):177-185. https://doi.org/10.1177/1063293X13493448S177185213Buchegger, S., & Le Boudec, J.-Y. (2005). Self-policing mobile ad hoc networks by reputation systems. IEEE Communications Magazine, 43(7), 101-107. doi:10.1109/mcom.2005.1470831Buttyán, L., & Hubaux, J.-P. (2003). Mobile Networks and Applications, 8(5), 579-592. doi:10.1023/a:1025146013151Groenevelt, R., Nain, P., & Koole, G. (2005). The message delay in mobile ad hoc networks. Performance Evaluation, 62(1-4), 210-228. doi:10.1016/j.peva.2005.07.018Hortelano, J., Calafate, C. T., Cano, J. C., de Leoni, M., Manzoni, P., & Mecella, M. (2010). Black-Hole Attacks in P2P Mobile Networks Discovered through Bayesian Filters. Lecture Notes in Computer Science, 543-552. doi:10.1007/978-3-642-16961-8_77Li, Y., Su, G., Wu, D. O., Jin, D., Su, L., & Zeng, L. (2011). The Impact of Node Selfishness on Multicasting in Delay Tolerant Networks. IEEE Transactions on Vehicular Technology, 60(5), 2224-2238. doi:10.1109/tvt.2011.2149552Marti, S., Giuli, T. J., Lai, K., & Baker, M. (2000). Mitigating routing misbehavior in mobile ad hoc networks. Proceedings of the 6th annual international conference on Mobile computing and networking - MobiCom ’00. doi:10.1145/345910.345955T.V.P, S., & A, S. (2010). Modeling the Behavior of Selfish Forwarding Nodes to Stimulate Cooperation in MANET. International journal of Network Security & Its Applications, 2(2), 147-160. doi:10.5121/ijnsa.2010.2212Xu, L., Lin, Z., & Ye, A. (2006). Analysis and Countermeasure of Selfish Node Problem in Mobile Ad Hoc Network. 2006 10th International Conference on Computer Supported Cooperative Work in Design. doi:10.1109/cscwd.2006.253072Zhong, S., Chen, J., & Yang, Y. R. (s. f.). Sprite: a simple, cheat-proof, credit-based system for mobile ad-hoc networks. IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428). doi:10.1109/infcom.2003.1209220Zhu, H., Fu, L., Xue, G., Zhu, Y., Li, M., & Ni, L. M. (2010). Recognizing Exponential Inter-Contact Time in VANETs. 2010 Proceedings IEEE INFOCOM. doi:10.1109/infcom.2010.546226

    Performance Analysis of Traffic and Mobility Models on Mobile and Vehicular Ad Hoc Wireless Networks

    Get PDF
    Advances in wireless communication technology and the proliferation of mobile devices enable the capa- bilities of communicating with each other even in areas with no pre-existing communication infrastructure. Traffic and mobility models play an important role in evaluating the performance of these communication networks. Despite criticism and assumption from various researches on Transmission Control Protocols (TCP), weaknesses on Mobile Ad Hoc Network (MANET), and Vehicular Ad Hoc Network (VANET). A simulation was carried out to evaluate the performance of Constant Bit Rate, Variable Bit Rate and Transmission Control Protocol on MANET and VANET using DSR routing protocol. CBR, VBR, and TCP have different manufacturer operation mechanisms and these differences lead to significant performance of CBR and VBR over TCP with better throughput and less average maximal end-to-end delay. DSR was able to respond to link failure at low mobility which led to TCP’s performance in packets delivery
    corecore