1,003 research outputs found

    Performance Evaluation of LoRaWAN for Green Internet of Things

    Get PDF
    LoRa is a long-range, low power and single-hop wireless technology that has been envisioned for Internet of Things (IoT) applications having battery driven nodes. Nevertheless, increase in number of end devices and varying throughput requirements impair the performance of pure Aloha in LoRaWAN. Considering these limitations, we evaluate the performance of slotted Aloha in LoRaWAN using extensive simulations. We employed packet error rate (PER), throughput, delay, and energy consumption of devices under different payload sizes and varying number of end devices as benchmarks. Moreover, an analytical analysis of backlogged and non-backlogged under slotted Aloha LoRaWAN environment is also performed. The simulation shows promising results in terms of PER and throughput compared to the pure Aloha. However, increase in delay has been observed during experimental evaluation.Finally, we endorse slotted aloha LoRaWAN for Green IoT Environment

    Performance evaluation of LoRaWAN for Green Internet of Things

    Get PDF
    LoRa is a long-range, low power and single-hop wireless technology that has been envisioned for Internet of Things (IoT) applications having battery driven nodes. Nevertheless, increase in number of end devices and varying throughput requirements impair the performance of pure Aloha in LoRaWAN. Considering these limitations, we evaluate the performance of slotted Aloha in LoRaWAN using extensive simulations. We employed packet error rate (PER), throughput, delay, and energy consumption of devices under different payload sizes and varying number of end devices as benchmarks. Moreover, an analytical analysis of backlogged and non-backlogged under slotted Aloha LoRaWAN environment is also performed. The simulation shows promising results in terms of PER and throughput compared to the pure Aloha. However, increase in delay has been observed during experimental evaluation.Finally, we endorse slotted aloha LoRaWAN for Green IoT Environment

    2D Time-frequency interference modelling using stochastic geometry for performance evaluation in Low-Power Wide-Area Networks

    Full text link
    In wireless networks, interferences between trans- missions are modelled either in time or frequency domain. In this article, we jointly analyze interferences in the time- frequency domain using a stochastic geometry model assuming the total time-frequency resources to be a two-dimensional plane and transmissions from Internet of Things (IoT) devices time- frequency patterns on this plane. To evaluate the interference, we quantify the overlap between the information packets: provided that the overlap is not too strong, the packets are not necessarily lost due to capture effect. This flexible model can be used for multiple medium access scenarios and is especially adapted to the random time-frequency access schemes used in Low-Power Wide-Area Networks (LPWANs). By characterizing the outage probability and throughput, our approach permits to evaluate the performance of two representative LPWA technologies Sigfox{\textsuperscript \textregistered} and LoRaWA{\textsuperscript \textregistered}

    Grant-free Radio Access IoT Networks: Scalability Analysis in Coexistence Scenarios

    Full text link
    IoT networks with grant-free radio access, like SigFox and LoRa, offer low-cost durable communications over unlicensed band. These networks are becoming more and more popular due to the ever-increasing need for ultra durable, in terms of battery lifetime, IoT networks. Most studies evaluate the system performance assuming single radio access technology deployment. In this paper, we study the impact of coexisting competing radio access technologies on the system performance. Considering \mathpzc K technologies, defined by time and frequency activity factors, bandwidth, and power, which share a set of radio resources, we derive closed-form expressions for the successful transmission probability, expected battery lifetime, and experienced delay as a function of distance to the serving access point. Our analytical model, which is validated by simulation results, provides a tool to evaluate the coexistence scenarios and analyze how introduction of a new coexisting technology may degrade the system performance in terms of success probability and battery lifetime. We further investigate solutions in which this destructive effect could be compensated, e.g., by densifying the network to a certain extent and utilizing joint reception

    TDoA-based outdoor positioning in a public LoRa network

    Get PDF
    The performance of LoRa Geo-location for outdoor tracking purposes has been evaluated on a public LoRaWAN network. Time Difference of Arrival (TDOA) localization accuracy, probability and update frequency were evaluated for different trajectories (walking, cycling, driving) and LoRa spreading factors. A median accuracy of 200m was obtained and in 90% of the cases the error was less then 480m

    LoRaWAN AS PART OF A SMART CITY STRATEGY

    Get PDF
    The LoRaWAN technology is repeatedly mentioned in connection with smart city initiatives, as it moves in the field of connectivity and IoT environment. This paper examines the role of LoRaWAN in smart city strategy and what vulnerabilities are known in the project using LoRaWAN. With help of a concrete use case of the city of Pforzheim (Germany), a SWOT model is set up and tested with experts. From this it can be deduced that the LoRaWAN technology is currently undergoing an interesting development but also has to overcome any hurdles in the urban environment

    Design and experimental validation of a LoRaWAN fog computing based architecture for IoT enabled smart campus applications

    Get PDF
    A smart campus is an intelligent infrastructure where smart sensors and actuators collaborate to collect information and interact with the machines, tools, and users of a university campus. As in a smart city, a smart campus represents a challenging scenario for Internet of Things (IoT) networks, especially in terms of cost, coverage, availability, latency, power consumption, and scalability. The technologies employed so far to cope with such a scenario are not yet able to manage simultaneously all the previously mentioned demanding requirements. Nevertheless, recent paradigms such as fog computing, which extends cloud computing to the edge of a network, make possible low-latency and location-aware IoT applications. Moreover, technologies such as Low-Power Wide-Area Networks (LPWANs) have emerged as a promising solution to provide low-cost and low-power consumption connectivity to nodes spread throughout a wide area. Specifically, the Long-Range Wide-Area Network (LoRaWAN) standard is one of the most recent developments, receiving attention both from industry and academia. In this article, the use of a LoRaWAN fog computing-based architecture is proposed for providing connectivity to IoT nodes deployed in a campus of the University of A Coruña (UDC), Spain. To validate the proposed system, the smart campus has been recreated realistically through an in-house developed 3D Ray-Launching radio-planning simulator that is able to take into consideration even small details, such as traffic lights, vehicles, people, buildings, urban furniture, or vegetation. The developed tool can provide accurate radio propagation estimations within the smart campus scenario in terms of coverage, capacity, and energy efficiency of the network. The results obtained with the planning simulator can then be compared with empirical measurements to assess the operating conditions and the system accuracy. Specifically, this article presents experiments that show the accurate results obtained by the planning simulator in the largest scenario ever built for it (a campus that covers an area of 26,000 m2), which are corroborated with empirical measurements. Then, how the tool can be used to design the deployment of LoRaWAN infrastructure for three smart campus outdoor applications is explained: a mobility pattern detection system, a smart irrigation solution, and a smart traffic-monitoring deployment. Consequently, the presented results provide guidelines to smart campus designers and developers, and for easing LoRaWAN network deployment and research in other smart campuses and large environments such as smart cities.This work has been funded by the Xunta de Galicia (ED431C 2016-045, ED431G/01), the Agencia Estatal de Investigación of Spain (TEC2016-75067-C4-1-R) and ERDF funds of the EU (AEI/FEDER, UE)
    corecore