71 research outputs found

    Multi-carrier code division multiple access

    Get PDF

    Multi-carrier CDMA using convolutional coding and interference cancellation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN016251 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Multi-carrier transmission techniques toward flexible and efficient wireless communication systems

    Get PDF
    制度:新 ; 文部省報告番号:甲2562号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2008/3/15 ; 早大学位記番号:新470

    Unified Framework for Multicarrier and Multiple Access based on Generalized Frequency Division Multiplexing

    Get PDF
    The advancements in wireless communications are the key-enablers of new applications with stringent requirements in low-latency, ultra-reliability, high data rate, high mobility, and massive connectivity. Diverse types of devices, ranging from tiny sensors to vehicles, with different capabilities need to be connected under various channel conditions. Thus, modern connectivity and network techniques at all layers are essential to overcome these challenges. In particular, the physical layer (PHY) transmission is required to achieve certain link reliability, data rate, and latency. In modern digital communications systems, the transmission is performed by means of a digital signal processing module that derives analog hardware. The performance of the analog part is influenced by the quality of the hardware and the baseband signal denoted as waveform. In most of the modern systems such as fifth generation (5G) and WiFi, orthogonal frequency division multiplexing (OFDM) is adopted as a favorite waveform due to its low-complexity advantages in terms of signal processing. However, OFDM requires strict requirements on hardware quality. Many devices are equipped with simplified analog hardware to reduce the cost. In this case, OFDM does not work properly as a result of its high peak-to-average power ratio (PAPR) and sensitivity to synchronization errors. To tackle these problems, many waveforms design have been recently proposed in the literature. Some of these designs are modified versions of OFDM or based on conventional single subcarrier. Moreover, multicarrier frameworks, such as generalized frequency division multiplexing (GFDM), have been proposed to realize varieties of conventional waveforms. Furthermore, recent studies show the potential of using non-conventional waveforms for increasing the link reliability with affordable complexity. Based on that, flexible waveforms and transmission techniques are necessary to adapt the system for different hardware and channel constraints in order to fulfill the applications requirements while optimizing the resources. The objective of this thesis is to provide a holistic view of waveforms and the related multiple access (MA) techniques to enable efficient study and evaluation of different approaches. First, the wireless communications system is reviewed with specific focus on the impact of hardware impairments and the wireless channel on the waveform design. Then, generalized model of waveforms and MA are presented highlighting various special cases. Finally, this work introduces low-complexity architectures for hardware implementation of flexible waveforms. Integrating such designs with software-defined radio (SDR) contributes to the development of practical real-time flexible PHY.:1 Introduction 1.1 Baseband transmission model 1.2 History of multicarrier systems 1.3 The state-of-the-art waveforms 1.4 Prior works related to GFDM 1.5 Objective and contributions 2 Fundamentals of Wireless Communications 2.1 Wireless communications system 2.2 RF transceiver 2.2.1 Digital-analogue conversion 2.2.2 QAM modulation 2.2.3 Effective channel 2.2.4 Hardware impairments 2.3 Waveform aspects 2.3.1 Single-carrier waveform 2.3.2 Multicarrier waveform 2.3.3 MIMO-Waveforms 2.3.4 Waveform performance metrics 2.4 Wireless Channel 2.4.1 Line-of-sight propagation 2.4.2 Multi path and fading process 2.4.3 General baseband statistical channel model 2.4.4 MIMO channel 2.5 Summary 3 Generic Block-based Waveforms 3.1 Block-based waveform formulation 3.1.1 Variable-rate multicarrier 3.1.2 General block-based multicarrier model 3.2 Waveform processing techniques 3.2.1 Linear and circular filtering 3.2.2 Windowing 3.3 Structured representation 3.3.1 Modulator 3.3.2 Demodulator 3.3.3 MIMO Waveform processing 3.4 Detection 3.4.1 Maximum-likelihood detection 3.4.2 Linear detection 3.4.3 Iterative Detection 3.4.4 Numerical example and insights 3.5 Summary 4 Generic Multiple Access Schemes 57 4.1 Basic multiple access and multiplexing schemes 4.1.1 Infrastructure network system model 4.1.2 Duplex schemes 4.1.3 Common multiplexing and multiple access schemes 4.2 General multicarrier-based multiple access 4.2.1 Design with fixed set of pulses 4.2.2 Computational model 4.2.3 Asynchronous multiple access 4.3 Summary 5 Time-Frequency Analyses of Multicarrier 5.1 General time-frequency representation 5.1.1 Block representation 5.1.2 Relation to Zak transform 5.2 Time-frequency spreading 5.3 Time-frequency block in LTV channel 5.3.1 Subcarrier and subsymbol numerology 5.3.2 Processing based on the time-domain signal 5.3.3 Processing based on the frequency-domain signal 5.3.4 Unified signal model 5.4 summary 6 Generalized waveforms based on time-frequency shifts 6.1 General time-frequency shift 6.1.1 Time-frequency shift design 6.1.2 Relation between the shifted pulses 6.2 Time-frequency shift in Gabor frame 6.2.1 Conventional GFDM 6.3 GFDM modulation 6.3.1 Filter bank representation 6.3.2 Block representation 6.3.3 GFDM matrix structure 6.3.4 GFDM demodulator 6.3.5 Alternative interpretation of GFDM 6.3.6 Orthogonal modulation and GFDM spreading 6.4 Summary 7 Modulation Framework: Architectures and Applications 7.1 Modem architectures 7.1.1 General modulation matrix structure 7.1.2 Run-time flexibility 7.1.3 Generic GFDM-based architecture 7.1.4 Flexible parallel multiplications architecture 7.1.5 MIMO waveform architecture 7.2 Extended GFDM framework 7.2.1 Architectures complexity and flexibility analysis 7.2.2 Number of multiplications 7.2.3 Hardware analysis 7.3 Applications of the extended GFDM framework 7.3.1 Generalized FDMA 7.3.2 Enchantment of OFDM system 7.4 Summary 7 Conclusions and Future work

    Avaliação da probabilidade de erro de bit e da eficiência espectral de sistemas celulares MC-CDMA que utilizam detecção multiusuário

    Get PDF
    Orientador: Celso de AlmeidaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Uma técnica que combina múltiplo acesso por divisão de código (CDMA) e multiplexação por divisão de frequências ortogonais (OFDM) foi proposta como uma opção para futuros padrões de comunicações móveis. Esta técnica é conhecida como múltiplo acesso por divisão de código com multiportadoras (MC-CDMA), a qual além de herdar as vantagens das técnicas CDMA e OFDM, também possui uma inerente diversidade em frequência. Apesar de ser uma técnica de múltiplo acesso, MC-CDMA foi tipicamente estudada usando detectores de um único usuário no receptor. Além disso, alguns trabalhos que têm estudado seu desempenho com detectores multi-usuário usam apenas simulações. Ademais, cenários de uma célula são tipicamente considerados, embora sistemas móveis operem em ambientes celulares. Esta dissertação visa complementar parcialmente as pesquisas prévias sobre MC-CDMA. Em geral, este trabalho aborda o desempenho do enlace reverso de sistemas MC-CDMA em termos da taxa de erro de bit (BER) e da eficiência espectral celular. Para isto, um sistema celular que usa os esquemas de reuso de frequências fracionário (FFR) e suave (SFR) é suposto. Entrelaçamento no domínio da frequência é usado no transmissor dos equipamentos dos usuários e, detecção multiusuário e um arranjo de antenas são considerados nos receptores das estações radio base. O transmissor dos equipamentos dos usuários também realiza controle de potência perfeito. Além disso, ruído aditivo Gaussiano branco, perda de percurso e desvanecimento lento e seletivo que segue a distribuição de Rayleigh são considerados no modelo do canal. As contribuições desta dissertação são resumidas a seguir. Expressões fechadas são obtidas para avaliar a BER média de um sistema celular que usa os detectores multiusuário: zero-forcing (ZF), minimum mean square error (MMSE) e maximum likelihood detector (MU-MLD). Adicionalmente, a técnica signal space diversity (SSD) é usada no sistema celular MC-CDMA. Para isto, o MU-MLD precisa ser empregado no receptor da estação radio base. Uma expressão precisa para avaliar a BER média neste cenário é também derivada. Ademais, uma análise assintótica das expressões da BER é feita para se obter mais informações sobre a ordem da diversidade e o comportamento do sistema no regime de alta relação sinal-ruído mais interferência. A complexidade computacional dos detectores multi-usuário também é obtida em termos do número de operações complexas realizadas durante o processo de detecção. Em particular, o MU-MLD é implementado através de um algoritmo de decodificação esférica (SD), a fim de reduzir sua complexidade. Algumas técnicas são fornecidas para reduzir ainda mais a complexidade da SD. Finalmente, uma expressão para avaliar a eficiência espectral celular média do sistema MC-CDMA nos cenários FFR e SFR é obtida. Esta análise é baseada em um algoritmo que calcula os raios de cobertura da célula para cada modulação usada no sistema, assumindo que modulação adaptativa é empregada. Para todos os cenários, modulações BPSK e M-QAM são consideradas. Simulações de Monte Carlo corroboram a precisão da análise matemática apresentadaAbstract: A hybrid technique combining code division multiple access (CDMA) and orthogonal frequency division multiplexing (OFDM) has been proposed as an option for future mobile communication standards. This technique is known as multicarrier code division multiple access (MC-CDMA), which, besides inheriting the advantages of CDMA and OFDM techniques, also possesses an inherent frequency diversity. Despite being a multiple access technique, MC-CDMA has been typically studied employing single-user detectors in the receiver. Moreover, some works that have studied their performance with multiuser detectors have done so far using only simulations. Furthermore, single cell scenarios are typically considered although mobile systems operate in cellular environments. This dissertation aims to partially complement previous research on MC-CDMA. In general, this work addresses the uplink performance of MC-CDMA systems in terms of the bit error rate (BER) and the cellular spectral efficiency. For this, a cellular system employing fractional frequency reuse (FFR) and soft frequency reuse (SFR) schemes is assumed. Frequency domain interleaving is performed in the transmitter into the user equipments and, multiuser detection and an antenna array are considered in the receivers at the base stations. The transmitter into the user equipments also performs perfect power control. Furthermore, additive white Gaussian noise, path-loss and slow frequency-selective Rayleigh fading are considered in the channel model. The contributions of this dissertation are summarized in the following. Closed-form expressions are derived to evaluate the mean BER of MC-CDMA cellular systems using the multiuser detectors: zero-forcing (ZF), minimum mean square error (MMSE) and maximum likelihood detector (MU-MLD). In addition, signal space diversity (SSD) is used in the MC-CDMA cellular system. For this, MU-MLD must be employed in the receiver at the base station. An accurate expression to evaluate the mean BER in this scenario is also derived. Moreover, an asymptotic analysis of the BER expressions is performed to obtain further insights of the diversity order and system behavior at the high signal-to-noise-plus-interference ratio regime. The computational complexity of the multiuser detectors is also obtained in terms of the number of complex operations performed during the detection process. In particular, MU-MLD is implemented via a sphere decoder (SD) algorithm in order to reduce its complexity. Some techniques are provided in order to further reduce the SD complexity. Finally, an expression to evaluate the mean cellular spectral efficiency of the MC-CDMA system in FFR and SFR scenarios is obtained. This analysis is based on an algorithm that calculates the cell coverage radius for each modulation used in the system, assuming that adaptive modulation is employed. For all analyzed scenarios, BPSK and M-QAM modulations are considered. Monte Carlo simulations corroborate the accuracy of the presented mathematical analysisDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia ElétricaCAPE

    Signal Processing for Compressed Sensing Multiuser Detection

    Get PDF
    The era of human based communication was longly believed to be the main driver for the development of communication systems. Already nowadays we observe that other types of communication impact the discussions of how future communication system will look like. One emerging technology in this direction is machine to machine (M2M) communication. M2M addresses the communication between autonomous entities without human interaction in mind. A very challenging aspect is the fact that M2M strongly differ from what communication system were designed for. Compared to human based communication, M2M is often characterized by small and sporadic uplink transmissions with limited data-rate constraints. While current communication systems can cope with several 100 transmissions, M2M envisions a massive number of devices that simultaneously communicate to a central base-station. Therefore, future communication systems need to be equipped with novel technologies facilitating the aggregation of massive M2M. The key design challenge lies in the efficient design of medium access technologies that allows for efficient communication with small data packets. Further, novel physical layer aspects have to be considered in order to reliable detect the massive uplink communication. Within this thesis physical layer concepts are introduced for a novel medium access technology tailored to the demands of sporadic M2M. This concept combines advances from the field of sporadic signal processing and communications. The main idea is to exploit the sporadic structure of the M2M traffic to design physical layer algorithms utilizing this side information. This concept considers that the base-station has to jointly detect the activity and the data of the M2M nodes. The whole framework of joint activity and data detection in sporadic M2M is known as Compressed Sensing Multiuser Detection (CS-MUD). This thesis introduces new physical layer concepts for CS-MUD. One important aspect is the question of how the activity detection impacts the data detection. It is shown that activity errors have a fundamentally different impact on the underlying communication system than data errors have. To address this impact, this thesis introduces new algorithms that aim at controlling or even avoiding the activity errors in a system. It is shown that a separate activity and data detection is a possible approach to control activity errors in M2M. This becomes possible by considering the activity detection task in a Bayesian framework based on soft activity information. This concept allows maintaining a constant and predictable activity error rate in a system. Beyond separate activity and data detection, the joint activity and data detection problem is addressed. Here a novel detector based on message passing is introduced. The main driver for this concept is the extrinsic information exchange between different entities being part of a graphical representation of the whole estimation problem. It can be shown that this detector is superior to state-of-the-art concepts for CS-MUD. Besides analyzing the concepts introduced simulatively, this thesis also shows an implementation of CS-MUD on a hardware demonstrator platform using the algorithms developed within this thesis. This implementation validates that the advantages of CS-MUD via over-the-air transmissions and measurements under practical constraints

    Signal processing techniques for mobile multimedia systems

    Get PDF
    Recent trends in wireless communication systems show a significant demand for the delivery of multimedia services and applications over mobile networks - mobile multimedia - like video telephony, multimedia messaging, mobile gaming, interactive and streaming video, etc. However, despite the ongoing development of key communication technologies that support these applications, the communication resources and bandwidth available to wireless/mobile radio systems are often severely limited. It is well known, that these bottlenecks are inherently due to the processing capabilities of mobile transmission systems, and the time-varying nature of wireless channel conditions and propagation environments. Therefore, new ways of processing and transmitting multimedia data over mobile radio channels have become essential which is the principal focus of this thesis. In this work, the performance and suitability of various signal processing techniques and transmission strategies in the application of multimedia data over wireless/mobile radio links are investigated. The proposed transmission systems for multimedia communication employ different data encoding schemes which include source coding in the wavelet domain, transmit diversity coding (space-time coding), and adaptive antenna beamforming (eigenbeamforming). By integrating these techniques into a robust communication system, the quality (SNR, etc) of multimedia signals received on mobile devices is maximised while mitigating the fast fading and multi-path effects of mobile channels. To support the transmission of high data-rate multimedia applications, a well known multi-carrier transmission technology known as Orthogonal Frequency Division Multiplexing (OFDM) has been implemented. As shown in this study, this results in significant performance gains when combined with other signal-processing techniques such as spa ce-time block coding (STBC). To optimise signal transmission, a novel unequal adaptive modulation scheme for the communication of multimedia data over MIMO-OFDM systems has been proposed. In this system, discrete wavelet transform/subband coding is used to compress data into their respective low-frequency and high-frequency components. Unlike traditional methods, however, data representing the low-frequency data are processed and modulated separately as they are more sensitive to the distortion effects of mobile radio channels. To make use of a desirable subchannel state, such that the quality (SNR) of the multimedia data recovered at the receiver is optimized, we employ a lookup matrix-adaptive bit and power allocation (LM-ABPA) algorithm. Apart from improving the spectral efficiency of OFDM, the modified LM-ABPA scheme, sorts and allocates subcarriers with the highest SNR to low-frequency data and the remaining to the least important data. To maintain a target system SNR, the LM-ABPA loading scheme assigns appropriate signal constella tion sizes and transmit power levels (modulation type) across all subcarriers and is adapted to the varying channel conditions such that the average system error-rate (SER/BER) is minimised. When configured for a constant data-rate load, simulation results show significant performance gains over non-adaptive systems. In addition to the above studies, the simulation framework developed in this work is applied to investigate the performance of other signal processing techniques for multimedia communication such as blind channel equalization, and to examine the effectiveness of a secure communication system based on a logistic chaotic generator (LCG) for chaos shift-keying (CSK)
    corecore