4,625 research outputs found

    Semi-Markov Models for Performance Evaluation of Telecommunication Networks in the Presence of Failures

    Get PDF
    Planning and deployment of next generation telecommunication networks based on the Third Generation Partnership Project IP Multimedia Subsystem (IMS) must take into account the occurrence of random failures causing performance degradations, in order to assess and maintain the Quality of Service offered by telecommunication service providers to their subscribers. In particular, core network signalling servers of IMS can be modelled as repairable multi-state elements where server states correspond to different performance levels. In this paper, we evaluate IMS signalling network performance in terms of the number of sessions handled by the network per time unit, by adopting a semi-Markov model for the IMS servers, which allows as well for non-exponential probability distributions of sojourn times, as often observed in practical network scenarios. Furthermore, a redundancy optimisation problem is solved in an IMS-based realistic scenario, to the aim of minimizing the deployment cost of a telecommunication network with a given availability requirement

    Resilience Analysis of the IMS based Networks

    Get PDF

    Dependable IMS services - A Performance Analysis of Server Replication and Mid-Session Inter-Domain Handover

    Get PDF

    Autonomic Overload Management For Large-Scale Virtualized Network Functions

    Get PDF
    The explosion of data traffic in telecommunication networks has been impressive in the last few years. To keep up with the high demand and staying profitable, Telcos are embracing the Network Function Virtualization (NFV) paradigm by shifting from hardware network appliances to software virtual network functions, which are expected to support extremely large scale architectures, providing both high performance and high reliability. The main objective of this dissertation is to provide frameworks and techniques to enable proper overload detection and mitigation for the emerging virtualized software-based network services. The thesis contribution is threefold. First, it proposes a novel approach to quickly detect performance anomalies in complex and large-scale VNF services. Second, it presents NFV-Throttle, an autonomic overload control framework to protect NFV services from overload within a short period of time, allowing to preserve the QoS of traffic flows admitted by network services in response to both traffic spikes (up to 10x the available capacity) and capacity reduction due to infrastructure problems (such as CPU contention). Third, it proposes DRACO, to manage overload problems arising in novel large-scale multi-tier applications, such as complex stateful network functions in which the state is spread across modern key-value stores to achieve both scalability and performance. DRACO performs a fine-grained admission control, by tuning the amount and type of traffic according to datastore node dependencies among the tiers (which are dynamically discovered at run-time), and to the current capacity of individual nodes, in order to mitigate overloads and preventing hot-spots. This thesis presents the implementation details and an extensive experimental evaluation for all the above overload management solutions, by means of a virtualized IP Multimedia Subsystem (IMS), which provides modern multimedia services for Telco operators, such as Videoconferencing and VoLTE, and which is one of the top use-cases of the NFV technology

    A Latency-driven Availability Assessment for Multi-Tenant Service Chains

    Get PDF
    Nowadays, most telecommunication services adhere to the Service Function Chain (SFC) paradigm, where network functions are implemented via software. In particular, container virtualization is becoming a popular approach to deploy network functions and to enable resource slicing among several tenants. The resulting infrastructure is a complex system composed by a huge amount of containers implementing different SFC functionalities, along with different tenants sharing the same chain. The complexity of such a scenario lead us to evaluate two critical metrics: the steady-state availability (the probability that a system is functioning in long runs) and the latency (the time between a service request and the pertinent response). Consequently, we propose a latency-driven availability assessment for multi-tenant service chains implemented via Containerized Network Functions (CNFs). We adopt a multi-state system to model single CNFs and the queueing formalism to characterize the service latency. To efficiently compute the availability, we develop a modified version of the Multidimensional Universal Generating Function (MUGF) technique. Finally, we solve an optimization problem to minimize the SFC cost under an availability constraint. As a relevant example of SFC, we consider a containerized version of IP Multimedia Subsystem, whose parameters have been estimated through fault injection techniques and load tests

    Competing by Saving Lives: How Pharmaceutical and Medical Device Companies Create Shared Value in Global Health

    Get PDF
    This report looks at how pharmaceutical and medical device companies can create shared value in global health by addressing unmet health needs in low- and middle-income countries. Companies have already begun to reap business value and are securing competitive advantages in the markets of tomorrow

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable públic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    Dynamic service composition for telecommunication services and its challenges

    Get PDF
    As communication networks have evolved towards IP (Internet Protocol) networks, telecommunication operators has expanded its reach to internet multimedia web content services while operating circuit-switch networks in parallel. With the adoption of SOA (Service Oriented Architecture) that enables service capability interfaces to be published and integrated with other service capabilities into new composite service, service composition allows telecommunication providers to accelerate more new services provisioning. From the perspective of telecommunication providers to deliver integrated composite service from different providers and different network protocols, this paper is aimed to present the current service composition based on middleware approaches; discuss the requirements of meeting the challenges; and compare the approaches
    corecore