37 research outputs found

    Using hypergraph theory to model coexistence management and coordinated spectrum allocation for heterogeneous wireless networks operating in shared spectrum

    Get PDF
    Electromagnetic waves in the Radio Frequency (RF) spectrum are used to convey wireless transmissions from one radio antenna to another. Spectrum utilisation factor, which refers to how readily a given spectrum can be reused across space and time while maintaining an acceptable level of transmission errors, is used to measure how efficiently a unit of frequency spectrum can be allocated to a specified number of users. The demand for wireless applications is increasing exponentially, hence there is a need for efficient management of the RF spectrum. However, spectrum usage studies have shown that the spectrum is under-utilised in space and time. A regulatory shift from static spectrum assignment to DSA is one way of addressing this. Licence exemption policy has also been advanced in Dynamic Spectrum Access (DSA) systems to spur wireless innovation and universal access to the internet. Furthermore, there is a shift from homogeneous to heterogeneous radio access and usage of the same spectrum band. These three shifts from traditional spectrum management have led to the challenge of coexistence among heterogeneous wireless networks which access the spectrum using DSA techniques. Cognitive radios have the ability for spectrum agility based on spectrum conditions. However, in the presence of multiple heterogeneous networks and without spectrum coordination, there is a challenge related to switching between available channels to minimise interference and maximise spectrum allocation. This thesis therefore focuses on the design of a framework for coexistence management and spectrum coordination, with the objective of maximising spectrum utilisation across geographical space and across time. The amount of geographical coverage in which a frequency can be used is optimised through frequency reuse while ensuring that harmful interference is minimised. The time during which spectrum is occupied is increased through time-sharing of the same spectrum by two or more networks, while ensuring that spectrum is shared by networks that can coexist in the same spectrum and that the total channel load is not excessive to prevent spectrum starvation. Conventionally, a graph is used to model relationships between entities such as interference relationships among networks. However, the concept of an edge in a graph is not sufficient to model relationships that involve more than two entities, such as more than two networks that are able to share the same channel in the time domain, because an edge can only connect two entities. On the other hand, a hypergraph is a generalisation of an undirected graph in which a hyperedge can connect more than two entities. Therefore, this thesis investigates the use of hypergraph theory to model the RF environment and the spectrum allocation scheme. The hypergraph model was applied to an algorithm for spectrum sharing among 100 heterogeneous wireless networks, whose geo-locations were randomly and independently generated in a 50 km by 50 km area. Simulation results for spectrum utilisation performance have shown that the hypergraph-based model allocated channels, on average, to 8% more networks than the graph-based model. The results also show that, for the same RF environment, the hypergraph model requires up to 36% fewer channels to achieve, on average, 100% operational networks, than the graph model. The rate of growth of the running time of the hypergraph-based algorithm with respect to the input size is equal to the square of the input size, like the graph-based algorithm. Thus, the model achieved better performance at no additional time complexity.Electromagnetic waves in the Radio Frequency (RF) spectrum are used to convey wireless transmissions from one radio antenna to another. Spectrum utilisation factor, which refers to how readily a given spectrum can be reused across space and time while maintaining an acceptable level of transmission errors, is used to measure how efficiently a unit of frequency spectrum can be allocated to a specified number of users. The demand for wireless applications is increasing exponentially, hence there is a need for efficient management of the RF spectrum. However, spectrum usage studies have shown that the spectrum is under-utilised in space and time. A regulatory shift from static spectrum assignment to DSA is one way of addressing this. Licence exemption policy has also been advanced in Dynamic Spectrum Access (DSA) systems to spur wireless innovation and universal access to the internet. Furthermore, there is a shift from homogeneous to heterogeneous radio access and usage of the same spectrum band. These three shifts from traditional spectrum management have led to the challenge of coexistence among heterogeneous wireless networks which access the spectrum using DSA techniques. Cognitive radios have the ability for spectrum agility based on spectrum conditions. However, in the presence of multiple heterogeneous networks and without spectrum coordination, there is a challenge related to switching between available channels to minimise interference and maximise spectrum allocation. This thesis therefore focuses on the design of a framework for coexistence management and spectrum coordination, with the objective of maximising spectrum utilisation across geographical space and across time. The amount of geographical coverage in which a frequency can be used is optimised through frequency reuse while ensuring that harmful interference is minimised. The time during which spectrum is occupied is increased through time-sharing of the same spectrum by two or more networks, while ensuring that spectrum is shared by networks that can coexist in the same spectrum and that the total channel load is not excessive to prevent spectrum starvation. Conventionally, a graph is used to model relationships between entities such as interference relationships among networks. However, the concept of an edge in a graph is not sufficient to model relationships that involve more than two entities, such as more than two networks that are able to share the same channel in the time domain, because an edge can only connect two entities. On the other hand, a hypergraph is a generalisation of an undirected graph in which a hyperedge can connect more than two entities. Therefore, this thesis investigates the use of hypergraph theory to model the RF environment and the spectrum allocation scheme. The hypergraph model was applied to an algorithm for spectrum sharing among 100 heterogeneous wireless networks, whose geo-locations were randomly and independently generated in a 50 km by 50 km area. Simulation results for spectrum utilisation performance have shown that the hypergraph-based model allocated channels, on average, to 8% more networks than the graph-based model. The results also show that, for the same RF environment, the hypergraph model requires up to 36% fewer channels to achieve, on average, 100% operational networks, than the graph model. The rate of growth of the running time of the hypergraph-based algorithm with respect to the input size is equal to the square of the input size, like the graph-based algorithm. Thus, the model achieved better performance at no additional time complexity

    Cognitive Radio for Smart Grid with Security Considerations

    Get PDF
    In this paper, we investigate how Cognitive Radio as a means of communication can be utilized to serve a smart grid deployment end to end, from a home area network to power generation. We show how Cognitive Radio can be mapped to integrate the possible different communication networks within a smart grid large scale deployment. In addition, various applications in smart grid are defined and discussed showing how Cognitive Radio can be used to fulfill their communication requirements. Moreover, information security issues pertained to the use of Cognitive Radio in a smart grid environment at different levels and layers are discussed and mitigation techniques are suggested. Finally, the well-known Role-Based Access Control (RBAC) is integrated with the Cognitive Radio part of a smart grid communication network to protect against unauthorized access to customer’s data and to the network at large

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Understanding the Challenges of TV White Space Databases for Mobile Usage

    Get PDF
    Transition to the Digital Television (DTV) has freed up large spectrum bands, known as a digital dividend. These frequencies are now available for opportunistic use and referred to as Television White Space (TVWS). The usage of the TVWS is regulated by licensing, and there are primary users, mostly TV broadcasters, that have bought the license to use certain channels, and secondary users, who can use channels that primary users are not currently utilizing. The coexistence can be facilitated either by spectrum sensing or White Space Databases (WSDBs) and in this thesis, we are concentrating on the latter. Technically, WSDB is a geolocational database that stores location and other relevant transmitter characteristics of primary users, such as antenna height and transmission power. WSDB calculates safety zone of the primary user by applying radio wave propagation model to the stored information. The secondary user sends a request to WSDB containing its location and receives a list of available channels. The main problem we are going to concentrate on is specific challenges that mobile devices face in using WSDBs. Current regulations demand that after moving each 100 meters, the mobile device has to query WSDB, consequently increasing device's energy consumption and network load. Fast moving devices confront the even more severe problem: there is always some delay in communications with WSDB, and it is possible that while waiting for the response the device moves another 100 meters. In that case, instead of using the reply the device has to query the WSDB again. For fast moving devices (e.g. contained inside vehicles) the vicious loop can continue indefinitely long, resulting in an inability to use TVWS at all. A. Majid has proposed predictive optimization algorithm called Nuna to deal with the problem. Our approach is different, we investigate spatiotemporal variations of the spectrum and basing on over than six months of observations we suggest the spectrum caching technique. According to our data, there are minimal temporal variations in TVWS spectrum, and that makes caching very appealing. We also sketch technical details for a possible spectrum caching solution

    Self-organized Clustering for Improved Interference Mitigation in White Spaces, Journal of Telecommunications and Information Technology, 2017, nr 2

    Get PDF
    In this paper a collaborative coexistence mechanism for white space base stations is proposed. We look at the case where these base stations operate in geographical areas where the density of used TV channels is such that only one channel is left for broadband access. We show how with cooperative closed loop control and a clustering strategy, it is possible to find feasible power assignments that provide a flexible and stable coverage solution. The framework under which we study our proposal is based on the IEEE 802.22 standard, which provides white space guidelines for applications in broadband access or machine-to-machine communications. We propose and evaluate a self-organized, collaborative power control and design strategy to enable effective coexistence of base stations under extreme bandwidth constraints. Finally, we also portray how proposed approach positively compares against others from different wireless access technologies

    A Review of TV White Space Technology and its Deployments in Africa

    Get PDF
    The emergence of bandwidth-driven applications in the current wireless communication environment is driving a paradigm shift from the conventional fixed spectrum assignment policy to intelligent and dynamic spectrum access. Practical demands for efficient spectrum utilization have continued to drive the development of TV white space technology to provide affordable and reliable wireless connectivity. It is envisaged that transition from analogue transmission to Digital Terrestrial Television (DTT) creates more spectrum opportunity for TV white space access and regulatory agencies of many countries had begun to explore this opportunity to address spectrum scarcity. To convey the evolutionary trends in the development of TV white space technology, this paper presents a comprehensive review on the contemporary approaches to TV white space technology and practical deployments of pilot projects in Africa. The paper outlines the activities in TV white space technology, which include regulations and standardization, commercial trials, research challenges, open issues and future research directions. Furthermore, it also provides an overview of the current industrial trends in TV white space technology which demonstrates that cognitive radio as an enabling technology for TV white space technology

    Outdoor Signal Strength Measurement at TV Band and ISM Band in Otaniemi Campus

    Get PDF
    TV white space technology is being intensively researched as it offers a solution that allows secondary usage of the local unused TV channels on a non-interfering basis to achieve a high spectrum efficiency. This thesis studies the difference between TV band and ISM band outdoor propagation characteristics in Otaniemi campus area. The study aims to verify if the TV band signal could extend the service range with less transmitting power and if it has better propagation and building penetration characteristics than ISM band signal. As part of our research we first perform a state-of-the-art review on TV white space technology including its features, promising applications and the evolution of regulation and standardisation. Then the measurement campaign set up is demonstrated based on the architecture of transmitter and receiver, the signal source and the antenna. Measurements were carried out by two transmitter locations and 49 receiver locations over distances up to 2.6 kilometers. The 'tcpdump' tool in OpenWrt system that embedded in Dlink box was used to measure the received signal characteristics for both bands. The measurement results have been compared with the existing empirical propagation models and the differences between the model predicted and field measured data have been analysed. The results could be considered as a good basis for further theoretical research as well as for practical application research

    A Hierarchical Spectrum Access Scheme for TV White Space Coexistence in Hetergeneous Networks

    Get PDF
    Among current techniques for dynamic access to television (TV) white space (TVWS), geolocation database-based access provides a promising performance in protecting the TV-band incumbents from interference that cannot be efficiently achieved in other license-exempt models. However, in heterogeneous wireless networks, most portable devices do not have such access and may cause interference to TV incumbents. We propose a hierarchical model for spectrum sharing in TVWS that includes a wide range of fixed and portable devices. In the first tier, the TV broadcaster can lease the spectrum bands to local fixed users based on a soft license agreement. The fixed users are allowed to share access to this spectrum with some mobile users in their proximity in exchange for cooperative relaying. We consider a practical scenario, where only partial channel state information (CSI) is available at the users\u27 transmitters, and we propose a robust algorithm against such uncertainties in CSI values. We also propose a reputation-based relay selection mechanism to identify selfish portable users. The proposed spectrum sharing framework can provide a practical model for TVWS-coexistence that prevents undesired interference to the incumbents while restricting interference among the unlicensed devices. The simulation results show the enhancement of fixed users\u27 rate compared with alternative relay selection methods
    corecore