1,191 research outputs found

    Towards a High-Level Implementation of Execution Primitives for Unrestricted, Independent And-Parallelism

    Get PDF
    Most efficient implementations of parallel logic programming rely on complex low-level machinery which is arguably difficult to implement and modify. We explore an alternative approach aimed at taming that complexity by raising core parts of the implementation to the source language level for the particular case of and-parallellism. We handle a significant portion of the parallel implementation at the Prolog level with the help of a comparatively small number of concurrency.related primitives which take case of lower-level tasks such as locking, thread management, stack set management, etc. The approach does not eliminate altogether modifications to the abstract machine, but it does greatly simplify them and it also facilitates experimenting with different alternatives. We show how this approach allows implementing both restricted and unrestricted (i.e., non fork-join) parallelism. Preliminary esperiments show thay the performance safcrifieced is reasonable, although granularity of unrestricted parallelism contributes to better observed speedups

    A semi-automatic parallelization tool for Java based on fork-join synchronization patterns

    Get PDF
    Because of the increasing availability of multi-core machines, clusters, Grids, and combinations of these environments, there is now plenty of computational power available for executing compute intensive applications. However, because of the overwhelming and rapid advances in distributed and parallel hardware and environments, today?s programmers are not fully prepared to exploit distribution and parallelism. In this sense, the Java language has helped in handling the heterogeneity of such environments, but there is a lack of facilities and tools to easily distributing and parallelizing applications. One solution to mitigate this problem and make some progress towards producing general tools seems to be the synthesis of semi-automatic parallelism and Parallelism as a Concern (PaaC), which allows parallelizing applications along with as little modifications on sequential codes as possible. In this paper, we discuss a new approach that aims at overcoming the drawbacks of current Java-based parallel and distributed development tools, which precisely exploit these new conceptsFil: Hirsch, Matias. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico - CONICET - Tandil. Instituto Superior de Ingenieria del Software; Argentina;Fil: Zunino, Alejandro. Consejo Nacional de Invest.cientif.y Tecnicas. Ctro Cientifico Tecnologico Conicet - Tandil. Instituto Superior de Ingenieria del Software;Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico - CONICET - Tandil. Instituto Superior de Ingenieria del Software

    Towards high-level execution primitives for and-parallelism: preliminary results

    Full text link
    Most implementations of parallel logic programming rely on complex low-level machinery which is arguably difflcult to implement and modify. We explore an alternative approach aimed at taming that complexity by raising core parts of the implementation to the source language level for the particular case of and-parallelism. Therefore, we handle a signiflcant portion of the parallel implementation mechanism at the Prolog level with the help of a comparatively small number of concurrency-related primitives which take care of lower-level tasks such as locking, thread management, stack set management, etc. The approach does not eliminate altogether modiflcations to the abstract machine, but it does greatly simplify them and it also facilitates experimenting with different alternatives. We show how this approach allows implementing both restricted and unrestricted (i.e., non fork-join) parallelism. Preliminary experiments show that the amount of performance sacriflced is reasonable, although granularity control is required in some cases. Also, we observe that the availability of unrestricted parallelism contributes to better observed speedups

    Improving the interoperability between MPI and task-based programming models

    Get PDF
    In this paper we propose an API to pause and resume task execution depending on external events. We leverage this generic API to improve the interoperability between MPI synchronous communication primitives and tasks. When an MPI operation blocks, the task running is paused so that the runtime system can schedule a new task on the core that became idle. Once the MPI operation is completed, the paused task is put again on the runtime system's ready queue. We expose our proposal through a new MPI threading level which we implement through two approaches. The first approach is an MPI wrapper library that works with any MPI implementation by intercepting MPI synchronous calls, implementing them on top of their asynchronous counterparts. In this case, the task-based runtime system is also extended to periodically check for pending MPI operations and resume the corresponding tasks once MPI operations complete. The second approach consists in directly modifying the MPICH runtime system, a well-known implementation of MPI, to directly call the pause/resume API when a synchronous MPI operation blocks and completes, respectively. Our experiments reveal that this proposal not only simplifies the development of hybrid MPI+OpenMP applications that naturally overlap computation and communication phases; it also improves application performance and scalability by removing artificial dependencies across communication tasks.This work has been developed with the support of the European Union Horizon 2020 Programme through both the INTERTWinE project (agreement No. 671602) and the Marie Sk lodowska-Curie grant (agreement No. 749516); the Spanish Government through the Severo Ochoa Program (SEV-2015-0493); the Spanish Ministry of Science and Innovation (TIN2015-65316-P) and the Generalitat de Catalunya (2017-SGR-1414).Peer ReviewedPostprint (author's final draft

    Integrating blocking and non-blocking MPI primitives with task-based programming models

    Get PDF
    In this paper we present the Task-Aware MPI library (TAMPI) that integrates both blocking and non-blocking MPI primitives with task-based programming models. The TAMPI library leverages two new runtime APIs to improve both programmability and performance of hybrid applications. The first API allows to pause and resume the execution of a task depending on external events. This API is used to improve the interoperability between blocking MPI communication primitives and tasks. When an MPI operation executed inside a task blocks, the task running is paused so that the runtime system can schedule a new task on the core that became idle. Once the blocked MPI operation is completed, the paused task is put again on the runtime system’s ready queue, so eventually it will be scheduled again and its execution will be resumed. The second API defers the release of dependencies associated with a task completion until some external events are fulfilled. This API is composed only of two functions, one to bind external events to a running task and another function to notify about the completion of external events previously bound. TAMPI leverages this API to bind non-blocking MPI operations with tasks, deferring the release of their task dependencies until both task execution and all its bound MPI operations are completed. Our experiments reveal that the enhanced features of TAMPI not only simplify the development of hybrid MPI+OpenMP applications that use blocking or non-blocking MPI primitives but they also naturally overlap computation and communication phases, which improves application performance and scalability by removing artificial dependencies across communication tasks.This work has been developed with the support of the European Union H2020 Programme through both the INTERTWinE project (agreement no. 671602) and the Marie Skłodowska-Curie grant (agreement no. 749516); the Spanish Ministry of Economy and Competitiveness through the Severo Ochoa Program (SEV-2015-0493); the Spanish Ministry of Science and Innovation (TIN2015-65316-P) and the Generalitat de Catalunya (2017-SGR1414).Peer ReviewedPostprint (author's final draft

    EasyFJP: Providing Hybrid Parallelism as a Concern for Divide and Conquer Java Applications

    Get PDF
    Because of the increasing availability of multi-core machines, clus- ters, Grids, and combinations of these there is now plenty of computational power,but today's programmers are not fully prepared to exploit parallelism. In particular, Java has helped in handling the heterogeneity of such environments. However, there is a lot of ground to cover regarding facilities to easily and elegantly parallelizing applications. One path to this end seems to be the synthesis of semi- automatic parallelism and Parallelism as a Concern (PaaC). The former allows users to be mostly unaware of parallel exploitation problems and at the same time manually optimize parallelized applications whenever necessary, while the latter allows applications to be separated from parallel-related code. In this paper, we present EasyFJP, an approach that implicitly exploits parallelism in Java applications based on the concept of fork-join synchronization pattern, a simple but effective abstraction for creating and coordinating parallel tasks. In addition, EasyFJP lets users to explicitly optimize applications through policies, or user-provided rules to dynamically regulate task granularity. Finally, EasyFJP relies on PaaC by means of source code generation techniques to wire applications and parallel-specific code together. Experiments with real-world applications on an emulated Grid and a cluster evidence that EasyFJP delivers competitive performance compared to state-of-the-art Java parallel programming tools.Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Tandil. Instituto Superior de Ingenieria del Software; Argentina;Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Tandil. Instituto Superior de Ingenieria del Software; Argentina;Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Tandil. Instituto Superior de Ingenieria del Software; Argentina
    • …
    corecore