55 research outputs found

    ARM Wrestling with Big Data: A Study of Commodity ARM64 Server for Big Data Workloads

    Full text link
    ARM processors have dominated the mobile device market in the last decade due to their favorable computing to energy ratio. In this age of Cloud data centers and Big Data analytics, the focus is increasingly on power efficient processing, rather than just high throughput computing. ARM's first commodity server-grade processor is the recent AMD A1100-series processor, based on a 64-bit ARM Cortex A57 architecture. In this paper, we study the performance and energy efficiency of a server based on this ARM64 CPU, relative to a comparable server running an AMD Opteron 3300-series x64 CPU, for Big Data workloads. Specifically, we study these for Intel's HiBench suite of web, query and machine learning benchmarks on Apache Hadoop v2.7 in a pseudo-distributed setup, for data sizes up to 20GB20GB files, 5M5M web pages and 500M500M tuples. Our results show that the ARM64 server's runtime performance is comparable to the x64 server for integer-based workloads like Sort and Hive queries, and only lags behind for floating-point intensive benchmarks like PageRank, when they do not exploit data parallelism adequately. We also see that the ARM64 server takes 13rd\frac{1}{3}^{rd} the energy, and has an Energy Delay Product (EDP) that is 5071%50-71\% lower than the x64 server. These results hold promise for ARM64 data centers hosting Big Data workloads to reduce their operational costs, while opening up opportunities for further analysis.Comment: Accepted for publication in the Proceedings of the 24th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC), 201

    Performance Evaluation of Hadoop based Big Data Applications with HiBench Benchmarking tool on IaaS Cloud Platforms

    Get PDF
    Cloud computing is a computing paradigm where large numbers of devices are connected through networks that provide a dynamically scalable infrastructure for applications, data and storage. Currently, many businesses, from small scale to big companies and industries, are changing their operations to utilize cloud services because cloud platforms could increase company’s growth through process efficiency and reduction in information technology spending [Coles16]. Companies are relying on cloud platforms like Amazon Web Services, Google Compute Engine, and Microsoft Azure, etc., for their business development. Due to the emergence of new technologies, devices, and communications, the amount of data produced is growing rapidly every day. Big data is a collection of large dataset, typically hundreds of gigabytes, terabytes or petabytes. Big data storage and the analytics of this huge volume of data are a great challenge for companies and new businesses to handle, which is a primary focus of this paper. This research was conducted on Amazon’s Elastic Compute Cloud (EC2) and Microsoft Azure platforms using the HiBench Hadoop Big Data Benchmark suite [HiBench16]. Processing huge volumes of data is a tedious task that is normally handled through traditional database servers. In contrast, Hadoop is a powerful framework is used to handle applications with big data requirements efficiently by using the MapReduce algorithm to run them on systems with many commodity hardware nodes. Hadoop’s distributed file system facilitates rapid storage and data transfer rates of big data among the nodes and remains operational even when a node failure has occurred in a cluster. HiBench is a big data benchmarking tool that is used for evaluating the performance of big data applications whose data are handled and controlled by the Hadoop framework cluster. Hadoop cluster environment was enabled and evaluated on two cloud platforms. A quantitative comparison was performed on Amazon EC2 and Microsoft Azure along with a study of their pricing models. Measures are suggested for future studies and research

    Performance modelling, analysis and prediction of Spark jobs in Hadoop cluster : a thesis by publications presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science, School of Mathematical & Computational Sciences, Massey University, Auckland, New Zealand

    Get PDF
    Big Data frameworks have received tremendous attention from the industry and from academic research over the past decade. The advent of distributed computing frameworks such as Hadoop MapReduce and Spark are powerful frameworks that offer an efficient solution for analysing large-scale datasets running under the Hadoop cluster. Spark has been established as one of the most popular large-scale data processing engines because of its speed, low latency in-memory computation, and advanced analytics. Spark computational performance heavily depends on the selection of suitable parameters, and the configuration of these parameters is a challenging task. Although Spark has default parameters and can deploy applications without much effort, a significant drawback of default parameter selection is that it is not always the best for cluster performance. A major limitation for Spark performance prediction using existing models is that it requires either large input data or system configuration that is time-consuming. Therefore, an analytical model could be a better solution for performance prediction and for establishing appropriate job configurations. This thesis proposes two distinct parallelisation models for performance prediction: the 2D-Plate model and the Fully-Connected Node model. Both models were constructed based on serial boundaries for a certain arrangement of executors and size of the data. In order to evaluate the cluster performance, various HiBench workloads were used, and workload’s empirical data were fitted with the models for performance prediction analysis. The developed models were benchmarked with the existing models such as Amdahl’s, Gustafson, ERNEST, and machine learning. Our experimental results show that the two proposed models can quickly and accurately predict performance in terms of runtime, and they can outperform the accuracy of machine learning models when extrapolating predictions

    The state of SQL-on-Hadoop in the cloud

    Get PDF
    Managed Hadoop in the cloud, especially SQL-on-Hadoop, has been gaining attention recently. On Platform-as-a-Service (PaaS), analytical services like Hive and Spark come preconfigured for general-purpose and ready to use. Thus, giving companies a quick entry and on-demand deployment of ready SQL-like solutions for their big data needs. This study evaluates cloud services from an end-user perspective, comparing providers including: Microsoft Azure, Amazon Web Services, Google Cloud, and Rackspace. The study focuses on performance, readiness, scalability, and cost-effectiveness of the different solutions at entry/test level clusters sizes. Results are based on over 15,000 Hive queries derived from the industry standard TPC-H benchmark. The study is framed within the ALOJA research project, which features an open source benchmarking and analysis platform that has been recently extended to support SQL-on-Hadoop engines. The ALOJA Project aims to lower the total cost of ownership (TCO) of big data deployments and study their performance characteristics for optimization. The study benchmarks cloud providers across a diverse range instance types, and uses input data scales from 1GB to 1TB, in order to survey the popular entry-level PaaS SQL-on-Hadoop solutions, thereby establishing a common results-base upon which subsequent research can be carried out by the project. Initial results already show the main performance trends to both hardware and software configuration, pricing, similarities and architectural differences of the evaluated PaaS solutions. Whereas some providers focus on decoupling storage and computing resources while offering network-based elastic storage, others choose to keep the local processing model from Hadoop for high performance, but reducing flexibility. Results also show the importance of application-level tuning and how keeping up-to-date hardware and software stacks can influence performance even more than replicating the on-premises model in the cloud.This work is partially supported by the Microsoft Azure for Research program, the European Research Council (ERC) under the EUs Horizon 2020 programme (GA 639595), the Spanish Ministry of Education (TIN2015-65316-P), and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft
    corecore