17,622 research outputs found

    Performance evaluation of MANET routing protocols based on QoS and energy parameters

    Get PDF
    Routing selection and supporting Quality of Service (QoS) are fundamental problems in Mobile Ad Hoc Network (MANET). Many different protocols have been proposed in the literature and some performance simulations are made to address this challenging task. This paper discusses the performance evaluation and comparison of two typical routing protocols; Ad Hoc On-Demand Distance Vector (AODV) and Destination-Sequenced Distance-Vector (DSDV) based on measuring the power consumption in network with varing of the QoS parameters. In this paper, we have studied and analyzed the impact of variations in QoS parameter combined with the choice of routing protocol, on network performance. The network performance is measured in terms of average throughput, packet delivery ratio (PDR), average jitter and energy consumption. The simulations are carried out in NS-3. The simulation results show that DSDV and AODV routing protocols are less energy efficient. The main aim of this paper is to highlight the directions for the future design of routing protocol which would be better than the existing ones in terms of energy utilization and delivery ratio

    Performance evaluation of energy consumption for AODV and DSR routing protocols in MANET

    Get PDF
    Proposing energy efficient routing protocols for Mobile Ad hoc Network (MANET) and Wireless Sensor Network is an uphill and challenging task. Many different routing protocols based on different features have been proposed to the IETF. Performances of many of these routing protocols have been evaluated focusing on metrics such as delay, routing overhead, and packet delivery. However, no studies have been done to investigate energy aspect of these routing protocols. Thus, this paper will discuss about the power consumption aspect of the MANET routing protocols. A performance comparison of Dynamic Source Routing (DSR) and Ad hoc On-Demand Distance Vector (AODV) routing protocols with respect to average energy consumption and routing energy consumption are explained thoroughly. Then, an evaluation of how the varying metrics in diverse scenarios affect the power consumption in these two protocols is discussed. A detailed simulation model using Network Simulator 2 (NS2) with different mobility and traffic models are used to study their energy consumption. Finally, an evaluation of these routing protocols based on energy consumption is presented

    A Study of Energy-efficient Routing Supporting Coordinated Sleep Scheduling in Wireless Ad Hoc Networks

    Get PDF
    A wireless ad hoc network is a collection of wireless computing devices that self-configure to form a network independently of any fixed infrastructure. Many wireless ad hoc network devices such as smartphones and tablets are usually powered by batteries with a limited operation time. This poses a significant challenge to the design of low-power network protocols. On one hand, energy-efficient routing protocols are widely discussed to reduce the end-to-end transmission energy by controlling the transmission power at senders. Recently, opportunistic routing (OR) has attracted a lot of attention for maximizing energy efficiency by exploiting the gains of multi-receiver diversity. On the other hand, sleep scheduling is commonly adopted as an effective mechanism to further reduce power wasted in overhearing and idle listening. However, the prior work has mainly treated energy-efficient routing and sleep scheduling as two separate tasks, which leads to a serious problem that neither component can fully minimize the network-wide energy consumption. In this thesis, we study how energy-efficient routing can be coordinated with sleep scheduling to increase network-side energy efficiency. We identify a trade-off between the decreased transmit power at senders due to multi-receiver diversity and the increased power at forwarders with the incorporation of coordinated sleep scheduling. Moreover, we provide a comprehensive evaluation of coordinated sleep scheduling impact on energy-efficient routing performance based on a 2-D grid topology and time division multiple access (TDMA) medium access control (MAC). Extensive simulation results demonstrate the effectiveness of the integrated function of coordinated sleep scheduling, significant impact of coordinated sleep scheduling on the energy-efficient routing performance and relationship between the network conditions (in terms of the traffic load and node density) and overall system performance achieved by different energy-efficient routing protocols

    Scalable energy-efficient routing in mobile Ad hoc network

    Get PDF
    The quick deployment without any existing infrastructure makes mobile ad hoc networks (MANET) a striking choice for dynamic situations such as military and rescue operations, disaster recovery, and so on and so forth. However, routing remains one of the major issues in MANET due to the highly dynamic and distributed environment. Energy consumption is also a significant issue in ad hoc networks since the nodes are battery powered. This report discusses some major dominating set based approaches to perform energy efficient routing in mobile ad hoc networks. It also presents the performance results for each of these mentioned approaches in terms of throughput, average end to end delay and the life time in terms of the first node failure. Based on the simulation results, I identified the key issues in these protocols regarding network life time. In this report, I propose and discuss a new approach “Dynamic Dominating Set Generation Algorithm” (DDSG) to optimize the network life time. This algorithm dynamically selects dominating nodes during the process of routing and thus creates a smaller dominating set. DDSG algorithm thereby eliminates the energy consumption from the non-used dominating nodes. In order to further increase the network life time, the algorithm takes into consideration the threshold settings which helps to distribute the process of routing within the network. This helps to eliminate a single dominating node from getting drained out by continuous transmission and reception of packets. In this report, the detailed algorithmic design and performance results through simulation is discussed

    On Energy Efficiency and Delay Minimization in Reactive Protocols in Wireless Multi-hop Networks

    Full text link
    In Wireless Multi-hop Networks (WMhNs), routing protocols with energy efficient and delay reduction techniques are needed to fulfill users demands. In this paper, we present Linear Programming models (LP_models) to assess and enhance reactive routing protocols. To practically examine constraints of respective LP_models over reactive protocols, we select AODV, DSR and DYMO. It is deduced from analytical simulations of LP_models in MATLAB that quick route repair reduces routing latency and optimizations of retransmission attempts results efficient energy utilization. To provide quick repair, we enhance AODV and DSR. To practically examine the efficiency of enhanced protocols in different scenarios of WMhNs, we conduct simulations using NS- 2. From simulation results, enhanced DSR and AODV achieve efficient output by optimizing routing latencies and routing load in terms of retransmission attempts
    corecore