226 research outputs found

    State-of-the-art assessment of 5G mmWave communications

    Get PDF
    Deliverable D2.1 del proyecto 5GWirelessMain objective of the European 5Gwireless project, which is part of the H2020 Marie Slodowska- Curie ITN (Innovative Training Networks) program resides in the training and involvement of young researchers in the elaboration of future mobile communication networks, focusing on innovative wireless technologies, heterogeneous network architectures, new topologies (including ultra-dense deployments), and appropriate tools. The present Document D2.1 is the first deliverable of Work- Package 2 (WP2) that is specifically devoted to the modeling of the millimeter-wave (mmWave) propagation channels, and development of appropriate mmWave beamforming and signal processing techniques. Deliver D2.1 gives a state-of-the-art on the mmWave channel measurement, characterization and modeling; existing antenna array technologies, channel estimation and precoding algorithms; proposed deployment and networking techniques; some performance studies; as well as a review on the evaluation and analysis toolsPostprint (published version

    Investigation of QoS Performance Evaluation over 5G Network for Indoor Environment at millimeter wave Bands

    Get PDF
    One of the key advancement in next-generation 5G wireless networks is the use of high-frequency signals specifically those are in the millimeter wave (mm-wave) bands. Using mmwave frequency will allow more bandwidth resulting higher data rates as compared to the currently available network. However, several challenges are emerging (such as fading, scattering, propagation loss etc.), when we propagate the radio signal at high frequencies. Optimizing propagation parameters of the mm-wave channels system are much essential for implementing in the realworld scenario. To keep this in mind, this paper presents the potential abilities of high frequencies signals by characterizing the indoor small cell propagation channel for 28 GHz, 38 GHz, 60 GHz and 73 GHz frequency band, which is considered as the ultimate frequency choice for many of the researchers. The most potential Close-In (CI) propagation model for mm-wave frequencies is used as a Large-scale path loss model. The results have been collected concerning the capacity of users to evaluate the average user throughput, cell-edge user throughput, average cell throughput, spectral efficiency and fairness index. The statistical results proved that these mm-wave spectrum gives a sufficiently greater overall performance and are available for use in the next generation 5G mobile communication network

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    5G – Wireless Communications for 2020

    Full text link

    Radio Network Planning and Propagation Models for Urban and Indoor Wireless Communication Networks

    Get PDF
    As the growing demand for mobile communications is constantly increasing, the need for better coverage, improved capacity, and higher transmission quality rises. Thus, a more efficient use of the radio spectrum and communication systems availability are required. This chapter presents EM propagation models most commonly used for the design of wireless communication systems, computer networks WLAN and WPAN for urban and/or in indoor environments. The review of commercial or University computer codes to assist design of WLAN and WPAN networks were done. An example of computer design and simulation of indoor Bluetooth and WLAN communication systems, in the building of Wroclaw University of Science and Technology, Wroclaw, Poland is shown in Chapter 8

    Propagation characterization and analysis for 5G mmWave through field experiments

    Get PDF
    The 5G network has been intensively investigated to realize the ongoing early deployment stage as an effort to match the exponential growth of the number of connected users and their increasing demands for high throughput, bandwidth with Quality of Service (QoS), and low latency. Given that most of the spectrums below 6 GHz are nearly used up, it is not feasible to employ the traditional spectrum, which is currently in use. Therefore, a promising and highly feasible effort to satisfy this insufficient frequency spectrum is to acquire new frequency bands for next-generation mobile communications. Toward this end, the primary effort has been focused on utilizing the millimeter-wave(mmWave) as the most promising candidate for the frequency spectrum. However, though the mmWave frequency band can fulfill the desired bandwidth requirements, it has been demonstrated to endure several issues like scattering, atmospheric absorption, fading, and especially penetration losses compared to the existing sub-6 GHz frequency band. Then, it is fundamental to optimize the mmWave band propagation channel to facilitate the practical 5G implementation for the network operators. Therefore, this study intends to investigate the outdoor channel characteristics of 26, 28, 36, and 38 GHz frequency bands for the communication infrastructure at the building to the ground floor in both Line of Sight (LOS) and Non-Line of Sight (NLOS) environments. The experimental campaign has studied the propagation path loss models such as Floating-Intercept (FI) and Close-In (CI) for the building to ground floor environment in LOS and NLOS scenarios. The findings obtained from the field experiments clearly show that the CI propagation model delivers much better performance in comparison with the FI model, thanks to its simple setup, accuracy, and precise function
    corecore