46 research outputs found

    Computational Physics on Graphics Processing Units

    Full text link
    The use of graphics processing units for scientific computations is an emerging strategy that can significantly speed up various different algorithms. In this review, we discuss advances made in the field of computational physics, focusing on classical molecular dynamics, and on quantum simulations for electronic structure calculations using the density functional theory, wave function techniques, and quantum field theory.Comment: Proceedings of the 11th International Conference, PARA 2012, Helsinki, Finland, June 10-13, 201

    The fast multipole method at exascale

    Get PDF
    This thesis presents a top to bottom analysis on designing and implementing fast algorithms for current and future systems. We present new analysis, algorithmic techniques, and implementations of the Fast Multipole Method (FMM) for solving N- body problems. We target the FMM because it is broadly applicable to a variety of scientific particle simulations used to study electromagnetic, fluid, and gravitational phenomena, among others. Importantly, the FMM has asymptotically optimal time complexity with guaranteed approximation accuracy. As such, it is among the most attractive solutions for scalable particle simulation on future extreme scale systems. We specifically address two key challenges. The first challenge is how to engineer fast code for today’s platforms. We present the first in-depth study of multicore op- timizations and tuning for FMM, along with a systematic approach for transforming a conventionally-parallelized FMM into a highly-tuned one. We introduce novel opti- mizations that significantly improve the within-node scalability of the FMM, thereby enabling high-performance in the face of multicore and manycore systems. The second challenge is how to understand scalability on future systems. We present a new algorithmic complexity analysis of the FMM that considers both intra- and inter- node communication costs. Using these models, we present results for choosing the optimal algorithmic tuning parameter. This analysis also yields the surprising prediction that although the FMM is largely compute-bound today, and therefore highly scalable on current systems, the trajectory of processor architecture designs, if there are no significant changes could cause it to become communication-bound as early as the year 2015. This prediction suggests the utility of our analysis approach, which directly relates algorithmic and architectural characteristics, for enabling a new kind of highlevel algorithm-architecture co-design. To demonstrate the scientific significance of FMM, we present two applications namely, direct simulation of blood which is a multi-scale multi-physics problem and large-scale biomolecular electrostatics. MoBo (Moving Boundaries) is the infrastruc- ture for the direct numerical simulation of blood. It comprises of two key algorithmic components of which FMM is one. We were able to simulate blood flow using Stoke- sian dynamics on 200,000 cores of Jaguar, a peta-flop system and achieve a sustained performance of 0.7 Petaflop/s. The second application we propose as future work in this thesis is biomolecular electrostatics where we solve for the electrical potential using the boundary-integral formulation discretized with boundary element methods (BEM). The computational kernel in solving the large linear system is dense matrix vector multiply which we propose can be calculated using our scalable FMM. We propose to begin with the two dielectric problem where the electrostatic field is cal- culated using two continuum dielectric medium, the solvent and the molecule. This is only a first step to solving biologically challenging problems which have more than two dielectric medium, ion-exclusion layers, and solvent filled cavities. Finally, given the difficulty in producing high-performance scalable code, productivity is a key concern. Recently, numerical algorithms are being redesigned to take advantage of the architectural features of emerging multicore processors. These new classes of algorithms express fine-grained asynchronous parallelism and hence reduce the cost of synchronization. We performed the first extensive performance study of a recently proposed parallel programming model, called Concurrent Collections (CnC). In CnC, the programmer expresses her computation in terms of application-specific operations, partially-ordered by semantic scheduling constraints. The CnC model is well-suited to expressing asynchronous-parallel algorithms, so we evaluate CnC using two dense linear algebra algorithms in this style for execution on state-of-the-art mul- ticore systems. Our implementations in CnC was able to match and in some cases even exceed competing vendor-tuned and domain specific library codes. We combine these two distinct research efforts by expressing FMM in CnC, our approach tries to marry performance with productivity that will be critical on future systems. Looking forward, we would like to extend this to distributed memory machines, specifically implement FMM in the new distributed CnC, distCnC to express fine-grained paral- lelism which would require significant effort in alternative models.Ph.D

    Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application

    Get PDF
    Simulations based on stencil computations (widely used in geosciences) have been dominated by the MPI+OpenMP programming model paradigm. Little effort has been devoted to experimenting with task-based parallelism in this context. We address this by introducing OpenMP task parallelism into the kernel of an industrial seismic modeling code, Minimod. We observe that even for these highly regular stencil computations, taskified kernels are competitive with traditional OpenMP-augmented loops, and in some experiments tasks even outperform loop parallelism. This promising result sets the stage for more complex computational patterns. Simulations involve more than just the stencil calculation: a collection of kernels is often needed to accomplish the scientific objective (e.g., I/O, boundary conditions). These kernels can often be computed simultaneously; however, implementing this simultaneous computation with traditional programming models is not trivial. The presented approach will be extended to cover simultaneous execution of several kernels, where we expect to fully exploit the benefits of task-based programming

    Generating and auto-tuning parallel stencil codes

    Get PDF
    In this thesis, we present a software framework, Patus, which generates high performance stencil codes for different types of hardware platforms, including current multicore CPU and graphics processing unit architectures. The ultimate goals of the framework are productivity, portability (of both the code and performance), and achieving a high performance on the target platform. A stencil computation updates every grid point in a structured grid based on the values of its neighboring points. This class of computations occurs frequently in scientific and general purpose computing (e.g., in partial differential equation solvers or in image processing), justifying the focus on this kind of computation. The proposed key ingredients to achieve the goals of productivity, portability, and performance are domain specific languages (DSLs) and the auto-tuning methodology. The Patus stencil specification DSL allows the programmer to express a stencil computation in a concise way independently of hardware architecture-specific details. Thus, it increases the programmer productivity by disburdening her or him of low level programming model issues and of manually applying hardware platform-specific code optimization techniques. The use of domain specific languages also implies code reusability: once implemented, the same stencil specification can be reused on different hardware platforms, i.e., the specification code is portable across hardware architectures. Constructing the language to be geared towards a special purpose makes it amenable to more aggressive optimizations and therefore to potentially higher performance. Auto-tuning provides performance and performance portability by automated adaptation of implementation-specific parameters to the characteristics of the hardware on which the code will run. By automating the process of parameter tuning — which essentially amounts to solving an integer programming problem in which the objective function is the number representing the code's performance as a function of the parameter configuration, — the system can also be used more productively than if the programmer had to fine-tune the code manually. We show performance results for a variety of stencils, for which Patus was used to generate the corresponding implementations. The selection includes stencils taken from two real-world applications: a simulation of the temperature within the human body during hyperthermia cancer treatment and a seismic application. These examples demonstrate the framework's flexibility and ability to produce high performance code

    GPU Acceleration of a Non-Standard Finite Element Mesh Truncation Technique for Electromagnetics

    Get PDF
    The emergence of General Purpose Graphics Processing Units (GPGPUs) provides new opportunities to accelerate applications involving a large number of regular computations. However, properly leveraging the computational resources of graphical processors is a very challenging task. In this paper, we use this kind of device to parallelize FE-IIEE (Finite Element-Iterative Integral Equation Evaluation), a non-standard finite element mesh truncation technique introduced by two of the authors. This application is computationally very demanding due to the amount, size and complexity of the data involved in the procedure. Besides, an efficient implementation becomes even more difficult if the parallelization has to maintain the complex workflow of the original code. The proposed implementation using CUDA applies different optimization techniques to improve performance. These include leveraging the fastest memories of the GPU and increasing the granularity of the computations to reduce the impact of memory access. We have applied our parallel algorithm to two real radiation and scattering problems demonstrating speedups higher than 140 on a state-of-the-art GPU.This work was supported in part by the Spanish Government under Grant TEC2016-80386-P, Grant TIN2017-82972-R, and Grant ESP2015-68245-C4-1-P, and in part by the Valencian Regional Government under Grant PROMETEO/2019/109
    corecore