766 research outputs found

    Optimization of Path Selection in MIMO

    Get PDF
    Multi-hop communication is the best way for improving the coverage area with reduced transmission power.This paper can easily found a path selection based on multi-hop decode and forward (DF) cooperative system. Then it is said to be a simple parallel multi-hop paths based cooperative communication system. Recently, cooperative communication have attracted significant attention to tackle the limitations imposed by multiple-input-multiple-output (MIMO) technology. To eliminate these limitations and increase spectral efficiency, Compress-and-Forward(CF) technique was proposed. In many known examples where compress-and-forward(CF) for relay networks is capacity achieving, it is only trivially so, i.e., it falls back to hashing without quantization.A potentially better strategy is to decode as much as possible and to compress the residual information, i.e., a combination of decode-and-forward (DF) and CF

    A Hop-by-Hop Relay Selection Strategy in Multi-Hop Cognitive Relay Networks

    Get PDF
    In this paper, a hop-by-hop relay selection strategy for multi-hop underlay cognitive relay networks (CRNs) is proposed. In each stage, relays that successfully decode the message from previous hop form a decoding set. Taking both maximum transmit power and maximum interference constraints into consideration, the relay in the decoding set which has the largest number of channels with an acceptable signal-to-noise ratio (SNR) level to the relays in the next stage is selected for retransmission. Therefore, relay selection in each stage only relies on channel state information (CSI) of the channels in that stage and does not require the CSI of any other stage. We analyze the performance of the proposed strategy in terms of endto-end outage probability and throughput, and show that the results match those obtained from simulation closely. Moreover, we derive the asymptotic end-to-end outage probability of the proposed strategy when there is no upper bound on transmitters’ power. We compare this strategy to other hop-by-hop strategies that have appeared recently in the literature and show that this strategy has the best performance in terms of outage probability and throughput. Finally it is shown that the outage probability and throughput of the proposed strategy are very close to that of exhaustive strategy which provides a lower bound for outage probability and an upper bound for throughput of all path selection strategies

    A Simple Cooperative Diversity Method Based on Network Path Selection

    Full text link
    Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However most of the proposed solutions require distributed space-time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme, that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this best relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M nodes is required, such as those proposed in [7]. The simplicity of the technique, allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability and efficiency in future 4G wireless systems.Comment: To appear, IEEE JSAC, special issue on 4
    • …
    corecore