339 research outputs found

    Mobile WiMAX system performance – simulated versus experimental results

    Get PDF
    This paper addresses the downlink performance of mobile WiMAX operating at 2.3GHz in an urban environment. The analysis includes a comparison of simulated and experimental results. Simulated packet error rate (PER) versus Signal to Noise Ratio (SNR) graphs are generated on a per link-speed basis using a fully compliant 512 carrier mobile WiMAX simulator. Experimental data is gathered using a carrier-class basestation, a mobile-WiMAX enabled laptop, and a suite of application layer logging software. An H264 AVC encoder and IP packetisation unit is used to transmit video to a mobile client. Results show strong agreement in terms of simulated and captured PER. Using this data, the downlink operating range is evaluated as a function of the Effective Isotropic Radiated Power (EIRP) and path loss exponent. Results indicate that at low EIRP (32 dBm) the expected outdoor operating range is around 200-400m. Applying the UK OFCOM regulations for licensed operation in the 2.5GHz band, downlink operation in excess of 2km can be achieved

    Mobile WiMAX: impact of mobility on the performance of limited feedback linear precoding

    Get PDF

    Mobile Broadband Possibilities considering the Arrival of IEEE 802.16m & LTE with an Emphasis on South Asia

    Get PDF
    This paper intends to look deeper into finding an ideal mobile broadband solution. Special stress has been put in the South Asian region through some comparative analysis. Proving their competency in numerous aspects, WiMAX and LTE already have already made a strong position in telecommunication industry. Both WiMAX and LTE are 4G technologies designed to move data rather than voice having IP networks based on OFDM technology. So, they aren't like typical technological rivals as of GSM and CDMA. But still a gesture of hostility seems to outburst long before the stable commercial launch of LTE. In this paper various aspects of WiMAX and LTE for deployment have been analyzed. Again, we tried to make every possible consideration with respect to south Asia i.e. how mass people of this region may be benefited. As a result, it might be regarded as a good source in case of making major BWA deployment decisions in this region. Besides these, it also opens the path for further research and in depth thinking in this issue.Comment: IEEE Publication format, ISSN 1947 5500, http://sites.google.com/site/ijcsis

    Handover management in mobile WiMAX using adaptive cross-layer technique

    Get PDF
    The protocol type and the base station (BS) technology are the main communication media between the Vehicle to Infrastructure (V2I) communication in vehicular networks. During high speed vehicle movement, the best communication would be with a seamless handover (HO) delay in terms of lower packet loss and throughput. Many studies have focused on how to reduce the HO delay during lower speeds of the vehicle with data link (L2) and network (L3) layers protocol. However, this research studied the Transport Layer (L4) protocol mobile Stream Control Transmission Protocol (mSCTP) used as an optimal protocol in collaboration with the Location Manager (LM) and Domain Name Server (DNS). In addition, the BS technology that performs smooth HO employing an adaptive algorithm in L2 to perform the HO according to current vehicle speed was also included in the research. The methods derived from the combination of L4 and the BS technology methods produced an Adaptive Cross-Layer (ACL) design which is a mobility oriented handover management scheme that adapts the HO procedure among the protocol layers. The optimization has a better performance during HO as it is reduces scanning delay and diversity level as well as support transparent mobility among layers in terms of low packet loss and higher throughput. All of these metrics are capable of offering maximum flexibility and efficiency while allowing applications to refine the behaviour of the HO procedure. Besides that, evaluations were performed in various scenarios including different vehicle speeds and background traffic. The performance evaluation of the proposed ACL had approximately 30% improvement making it better than the other handover solutions

    Rapid Prototyping for Evaluating Vehicular Communications

    Get PDF
    [Abstract] This Thesis details the different elements of a rapid prototyping system able to implement and evaluate vehicular communications fast, according to the continuously evolving requirements of the industry. The system is basically composed of a testbed and a channel emulator, which allow evaluating communication transceivers in realistic vehicular scenarios. Two different testbeds are introduced: a generic 2x2 system and a vehicular platform. The former is used to compare and study space-time block coding (STBC) transmissions at 2.4 GHz over different indoor channels. The latter makes use of software transceivers whose performance is evaluated when they work under artificial high-speed Rayleigh-fading scenarios. To show the capabilities of both platforms, three software transceivers have been developed following the specifications for the physical layers of the standards IEEE 802.11p, IEEE 802.11a and IEEE 802.16e (Mobile WiMAX). The present work details the different elements that make up each transceiver and indicates how to connect them to the rest of the system to perform evaluation measurements. Finally, single-antenna and multi-antenna performances are measured thanks to the design and implementation of three FPGA-based channel emulators that are able to recreate up to seven different vehicular scenarios that include urban canyons, suburban areas and highways[Resumo] A presente Tese detalla os elementos necesarios para constituir un sistema basado en prototipado rápido capaz de levar a cabo e avaliar comunicacións vehiculares. O hardware do sistema está composto básicamente por unha plataforma de probas (testbed) e un emulador de canal, os cales permiten avaliar o rendemento de transceptores inartiamicos recreando diferentes escenarios vehiculares. Inicialmente, este traballo céntrase na descripción do hardware do sistema, detallando a construcción e proba dunha plataforma multi-antena e un testebed vehicular. Estos sistemas permitiron, respectivamente, estudar o comportamento de códigos STBC (space-time block codes) en interiores e medir o rendemento de tranceptores software ao traballar a distintas velocidades vehiculares en canais con desvaecemento Rayleigh. Tres transceptores software foron creados seguindo as especificacións das capas físicas dos estándares IEEE 802.11p, IEEE 802.11a e IEEE 802.16e (Mobile WiMAX). Este traballo detalla os diferentes componentes de cada transceptor, indicando cómo conectalos ao resto do sistema para realizar a avaliacition do seu rendemento. Dita avaliación realizouse coa axuda de tres emuladores de canal basados en tecnoloxía FPGA (Field Programmable Gate Array), os cales son capaces de recrear ata sete escenarios vehiculares distintos, incluindo cañóns urbanos, zonas suburbanas e autopistas.[Resumen] La presente Tesis detalla los elementos necesarios para constituir un sistema basado en prototipado rtiapido capaz de llevar a cabo y evaluar comunicaciones vehiculares. El hardware del sistema está compuesto por una plataforma de pruebas (testbed) y un emulador de canal, los cuales permiten evaluar el rendimiento de transceptores inaltiambricos recreando diferentes escenarios vehiculares. Inicialmente, este trabajo se centra en la descripcition del hardware del sistema, detallando la construccition y prueba de una plataforma multi-antena y un testebed vehicular. Estos sistemas han permitido, respectivamente, estudiar el comportamiento de ctiodigos STBC (space-time block codes) en interiores y medir el rendimiento en canal con desvanecimiento Rayleigh de tranceptores software a distintas velocidades vehiculares. Tres transceptores software han sido creados siguiendo las especificaciones de las capas físicas de los estandares IEEE 802.11p, IEEE 802.11a e IEEE 802.16e (Mobile WiMAX). Este trabajo detalla los diferentes componentes de cada transceptor, indicando ctiomo conectarlos al resto del sistema para realizar la evaluacition de su rendimiento. Dicha evaluacition se realiztio con la ayuda de tres emuladores de canal basados en FPGAs (Field Programmable Gate Array), los cuales son capaces de recrear comunicaciones multi-antena en hasta siete escenarios vehiculares distintos, incluyendo cañones urbanos, zonas suburbanas y autopistas

    C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 2: Test Bed Performance Evaluation and Final AeroMACS Recommendations

    Get PDF
    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II (this document) describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions
    corecore