3,548 research outputs found

    Efficient Multi-way Theta-Join Processing Using MapReduce

    Full text link
    Multi-way Theta-join queries are powerful in describing complex relations and therefore widely employed in real practices. However, existing solutions from traditional distributed and parallel databases for multi-way Theta-join queries cannot be easily extended to fit a shared-nothing distributed computing paradigm, which is proven to be able to support OLAP applications over immense data volumes. In this work, we study the problem of efficient processing of multi-way Theta-join queries using MapReduce from a cost-effective perspective. Although there have been some works using the (key,value) pair-based programming model to support join operations, efficient processing of multi-way Theta-join queries has never been fully explored. The substantial challenge lies in, given a number of processing units (that can run Map or Reduce tasks), mapping a multi-way Theta-join query to a number of MapReduce jobs and having them executed in a well scheduled sequence, such that the total processing time span is minimized. Our solution mainly includes two parts: 1) cost metrics for both single MapReduce job and a number of MapReduce jobs executed in a certain order; 2) the efficient execution of a chain-typed Theta-join with only one MapReduce job. Comparing with the query evaluation strategy proposed in [23] and the widely adopted Pig Latin and Hive SQL solutions, our method achieves significant improvement of the join processing efficiency.Comment: VLDB201

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author

    Parallel Processing of Large Graphs

    Full text link
    More and more large data collections are gathered worldwide in various IT systems. Many of them possess the networked nature and need to be processed and analysed as graph structures. Due to their size they require very often usage of parallel paradigm for efficient computation. Three parallel techniques have been compared in the paper: MapReduce, its map-side join extension and Bulk Synchronous Parallel (BSP). They are implemented for two different graph problems: calculation of single source shortest paths (SSSP) and collective classification of graph nodes by means of relational influence propagation (RIP). The methods and algorithms are applied to several network datasets differing in size and structural profile, originating from three domains: telecommunication, multimedia and microblog. The results revealed that iterative graph processing with the BSP implementation always and significantly, even up to 10 times outperforms MapReduce, especially for algorithms with many iterations and sparse communication. Also MapReduce extension based on map-side join usually noticeably presents better efficiency, although not as much as BSP. Nevertheless, MapReduce still remains the good alternative for enormous networks, whose data structures do not fit in local memories.Comment: Preprint submitted to Future Generation Computer System

    ARM Wrestling with Big Data: A Study of Commodity ARM64 Server for Big Data Workloads

    Full text link
    ARM processors have dominated the mobile device market in the last decade due to their favorable computing to energy ratio. In this age of Cloud data centers and Big Data analytics, the focus is increasingly on power efficient processing, rather than just high throughput computing. ARM's first commodity server-grade processor is the recent AMD A1100-series processor, based on a 64-bit ARM Cortex A57 architecture. In this paper, we study the performance and energy efficiency of a server based on this ARM64 CPU, relative to a comparable server running an AMD Opteron 3300-series x64 CPU, for Big Data workloads. Specifically, we study these for Intel's HiBench suite of web, query and machine learning benchmarks on Apache Hadoop v2.7 in a pseudo-distributed setup, for data sizes up to 20GB20GB files, 5M5M web pages and 500M500M tuples. Our results show that the ARM64 server's runtime performance is comparable to the x64 server for integer-based workloads like Sort and Hive queries, and only lags behind for floating-point intensive benchmarks like PageRank, when they do not exploit data parallelism adequately. We also see that the ARM64 server takes 13rd\frac{1}{3}^{rd} the energy, and has an Energy Delay Product (EDP) that is 5071%50-71\% lower than the x64 server. These results hold promise for ARM64 data centers hosting Big Data workloads to reduce their operational costs, while opening up opportunities for further analysis.Comment: Accepted for publication in the Proceedings of the 24th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC), 201
    corecore