5,132 research outputs found

    Controlo de congestionamento em redes sem fios

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaCongestion control in wireless networks is an important and open issue. Previous research has proven the poor performance of the Transport Control Protocol (TCP) in such networks. The factors that contribute to the poor performance of TCP in wireless environments concern its unsuitability to identify/detect and react properly to network events, its TCP window based ow control algorithm that is not suitable for the wireless channel, and the congestion collapse due to mobility. New rate based mechanisms have been proposed to mitigate TCP performance in wired and wireless networks. However, these mechanisms also present poor performance, as they lack of suitable bandwidth estimation techniques for multi-hop wireless networks. It is thus important to improve congestion control performance in wireless networks, incorporating components that are suitable for wireless environments. A congestion control scheme which provides an e - cient and fair sharing of the underlying network capacity and available bandwidth among multiple competing applications is crucial to the definition of new e cient and fair congestion control schemes on wireless multi-hop networks. The Thesis is divided in three parts. First, we present a performance evaluation study of several congestion control protocols against TCP, in wireless mesh and ad-hoc networks. The obtained results show that rate based congestion control protocols need an eficient and accurate underlying available bandwidth estimation technique. The second part of the Thesis presents a new link capacity and available bandwidth estimation mechanism denoted as rt-Winf (real time wireless inference). The estimation is performed in real-time and without the need to intrusively inject packets in the network. Simulation results show that rt-Winf obtains the available bandwidth and capacity estimation with accuracy and without introducing overhead trafic in the network. The third part of the Thesis proposes the development of new congestion control mechanisms to address the congestion control problems of wireless networks. These congestion control mechanisms use cross layer information, obtained by rt-Winf, to accurately and eficiently estimate the available bandwidth and the path capacity over a wireless network path. Evaluation of these new proposed mechanisms, through ns-2 simulations, shows that the cooperation between rt-Winf and the congestion control algorithms is able to significantly increase congestion control eficiency and network performance.O controlo de congestionamento continua a ser extremamente importante quando se investiga o desempenho das redes sem fios. Trabalhos anteriores mostram o mau desempenho do Transport Control Proto- col (TCP) em redes sem fios. Os fatores que contribuem para um pior desempenho do TCP nesse tipo de redes s~ao: a sua falta de capacidade para identificar/detetar e reagir adequadamente a eventos da rede; a utilização de um algoritmo de controlo de uxo que não é adequado para o canal sem fios; e o colapso de congestionamento devido á mobilidade. Para colmatar este problemas foram propostos novos mecanismos de controlo de congestionamento baseados na taxa de transmissão. No entanto, estes mecanismos também apresentam um pior desempenho em redes sem fios, já que não utilizam mecanismos adequados para a avaliação da largura de banda disponível. Assim, é importante para melhorar o desempenho do controlo de congestionamento em redes sem fios, incluir componentes que são adequados para esse tipo de ambientes. Um esquema de controlo de congestionamento que permita uma partilha eficiente e justa da capacidade da rede e da largura de banda disponível entre múltiplas aplicações concorrentes é crucial para a definição de novos, eficientes e justos mecanismos de controlo congestionamento para as redes sem fios. A Tese está dividida em três partes. Primeiro, apresentamos um estudo sobre a avaliação de desempenho de vários protocolos de controlo de congestionamento relativamente ao TCP, em redes sem fios em malha e ad-hoc. Os resultados obtidos mostram que os protocolos baseados na taxa de transmissão precisam de uma técnica de avaliação da largura de banda disponível que seja eficiente e precisa . A segunda parte da Tese apresenta um novo mecanismo de avaliação da capacidade da ligação e da largura de banda disponível, designada por rt-Winf (real time wireless inference). A avaliação é realizada em tempo real e sem a necessidade de inserir tráfego na rede. Os resultados obtidos através de simulação e emulação mostram que o rt-Winf obtém com precisão a largura de banda disponível e a capacidade da ligação sem sobrecarregar a rede. A terceira parte da Tese propõe novos mecanismos de controlo de congestionamento em redes sem fios. Estes mecanismos de controlo de congestionamento apresentam um conjunto de caracter ísticas novas para melhorar o seu desempenho, de entre as quais se destaca a utilização da informação de largura de banda disponível obtida pelo rt-Winf. Os resultados da avaliação destes mecanismos, utilizando o simulador ns-2, permitem concluir que a cooperação entre o rt-Winf e os algoritmos de controlo de congestionamento aumenta significativamente o desempenho da rede

    Feasibility of Using Passive Monitoring Techniques in Mesh Networks for the Support of Routing

    Get PDF
    In recent years, Wireless Mesh Networks (WMNs) have emerged as a promising solution to provide low cost access networks that extend Internet access and other networking services. Mesh routers form the backbone connectivity through cooperative routing in an often unstable wireless medium. Therefore, the techniques used to monitor and manage the performance of the wireless network are expected to play a significant role in providing the necessary performance metrics to help optimize the link performance in WMNs. This thesis initially presents an assessment of the correlation between passive monitoring and active probing techniques used for link performance measurement in single radio WMNs. The study reveals that by combining multiple performance metrics obtained by using passive monitoring, a high correlation with active probing can be achieved. The thesis then addresses the problem of the system performance degradation associated with simultaneous activation of multiple radios within a mesh node in a multi-radio environment. The experiments results suggest that the finite computing resource seems to be the limiting factor in the performance of a multi-radio mesh network. Having studied this characteristic of multi-radio networks, a similar approach as used in single radio mesh network analysis was taken to investigate the feasibility of passive monitoring in a multi-radio environment. The accuracy of the passive monitoring technique was compared with that of the active probing technique and the conclusion reached is that passive monitoring is a viable alternative to active probing technique in multi-radio mesh networks

    Available Bandwidth Estimation for Adaptive Video Streaming in Mobile Ad Hoc

    Full text link
    [EN] We propose in this paper an algorithm for available bandwidth estimation in mobile ad hoc networks and its integration into a conventional routing protocol like AODV for improving the rate-adaptive video streaming. We have introduced in our approach a local estimation of the available bandwidth as well as a prediction of the consumed bandwidth. This information allows video application to adjust its transmission rate avoiding network congestion. We conducted a performance evaluation of our solution through simulation experiments using two network scenarios. In the simulation study, transmission of video streams encoded with the H.264/MPEG-4 advanced video coding standard was evaluated. The results reveal performance improvements in terms of packet loss, delay and PSNR.Castellanos, W.; Guerri Cebollada, JC.; Arce Vila, P. (2019). Available Bandwidth Estimation for Adaptive Video Streaming in Mobile Ad Hoc. International Journal of Wireless Information Networks. 26(3):218-229. https://doi.org/10.1007/s10776-019-00431-0S21822926

    Network tomography application in mobile ad-hoc networks.

    Get PDF
    The memorability of mobile ad-hoc network (MANET) is the precondition of its management, performance optimization and network resources re-allocations. The traditional network interior measurement technique performs measurement on the nodes or links directly, and obtains the node or link performance through analyzing the measurement sample, which usually is used in the wired networks measurement based on the solid infrastructure. However, MANET is an infrastructure-free, multihop, and self-organized temporary network, comprised of a group of mobile nodes with wireless communication devices. Not only does its topology structure vary with time, but also the communication protocol used in its network layer or data link layer is diverse and non-standard. Specially, with the limitation of node energy and wireless bandwidth, the traditional interior network measurement technique is not suited for the measurement requirement of MANET. In order to solve the problem of interior links performance (such as packet loss rate and delay) measurement in MANET, this dissertation has adopted an external measurement based on network tomography (NT). Being a new measurement technology, NT collects the sample of path performance based on end-to-end measurement to infer the probability distribution of the network logical links performance parameters by using mathematical statistics theory, which neither need any cooperation from internal network, nor dependence from communication protocols, and has the merit of being deployed exibly. Thus from our literature review it can be concluded that Network Tomography technique is adaptable for ad-hoc network measurement. We have the following contribution in the eld of ad-hoc network performance: PLE Algorithm: We developed the PLE algorithm based on EM model, which statistically infer the link performance. Stitching Algorithm: Stitching algorithm is based on the isomorphic properties of a directed graph. The proposed algorithm concatenates the links, which are common over various steady state period and carry forward the ones, which are not. Hence in the process it gives the network performance analysis of the entire network over the observation period. EM routing: EM routing is based on the statistical inference calculated by our PLE algorithm. EM routing provides multiple performance metric such as link delay and hops of all the possible path in various time period in a wireless mesh network
    corecore